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PREFACE

The book describes application of the finite element method to electro- and
magnetostatic problems. The main emphasis of the book is on the electro-
magnetic formulations rather than on the diverse features of the finite ele-
ment method. Boundary value problems based on the div-grad and curl-curl
equations, are discussed in great detail. All derivation steps on the way from
Maxwell’s equations to the numerical recipes that can be programmed into
a computer are discussed at length. A special attention is paid to boundary
and interface conditions.

The book is supplemented with computer code written with a help of deal.II
finite element library. The computer code illustrates application of the finite
element method to various electromagnetic formulations discussed in the
book. The documentation of the computer code exists in the form of an on-
line book at www.cembooks.nl. The computer code can be downloaded at
www.cembooks.nl or, alternatively, at www.github.com/cembooks.

The finite element method is described as seen by a user of the deal.II fi-
nite element library. The mesh cells are assumed to be quadrilateral and hex-
ahedral in two- and three-dimensional spaces, respectively. The four finite
elements essential for the De Rham complex are assumed to be the finite el-
ements available in deal.II, i.e., Lagrange, Nedelec, Raviart-Thomas, and dis-
continuous Lagrange finite elements. All dielectric and magnetic materials
are assumed to be linear, lossless, and isotropic.

The book is organized as the following.
Chapter 1 contains a description of the basic concepts that are essential for

formulating problems in electromagnetics and for understanding the finite
element method.

Chapter 2 is dedicated to the formulation of the static scalar boundary
value problem that can describe most of the problems in the electro- and
magnetostatics. Next, a number of useful techniques that can help to make a
successful computer code are considered.

Chapter 3 deals with formulations of magnetostatic problems. Bound-
ary value problems formulated in therms of the total scalar magnetic poten-
tial, reduced scalar magnetic potential, and vector magnetic potential are de-
rived. Some useful techniques for reducing the size of the problem domain
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as well as for dealing with the unbounded problem domain are discussed as
well.

Chapter 4 deals with variational formulations. The static scalar bound-
ary value problem derived in Chapter 2 and the static vector boundary value
problem derived in Chapter 3 are converted into functionals. In the end of
this chapter a general functional for projections is derived. A projection is,
essentially, an operation that helps to place a physical quantity into a correct
function space.

Chapter 5 introduces the finite element method. Four types of finite ele-
ments are discussed. The Bossavit’s diagrams are presented as a great tool
for describing problems in electromagnetics. Two methods of allocating a
correct type of finite elements to a physical quantity are described. The func-
tionals that are derived in Chapter 4 are converted into numerical recipes. A
number of useful projection operations are converted into numerical recipes
as well. The numerical recipes are, essentially, the formulas that are imple-
mented by the solvers and projectors of the supplemented computer code.

Chapter 6 is a collection of solved problems in electromagnetics that have
closed-form analytical solutions. The first thought that naturally appears af-
ter programming a numerical recipe into a computer is: does it really work?
One way to answer this question is to feed the code a problem and compare
the numerical result to a known closed-form analytical solution. One prob-
lem, however, cannot cover all aspects of a boundary value problem. It is
better to have a collection of problems. Chapter 6 contains such collection.

Siarhei Uzunbajakau
Rotterdam, 2024
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CHAPTER 1

PRELIMINARIES

1.1 VECTOR CALCULUS

1.1.1 VECTORS

The vectors as they are known today in electromagnetics were introduced in
the end of the nineteenth century by Oliver Heaviside. In [23], page 132, he
wrote,

"Ordinary algebra, as is well known, treats of quantities and their relations.
If, however, we examine geometry, we shall soon find that the fundamental
quantity concerned, namely a straight line, when regarded as an entity, cannot
be treated simply as a quantity in the algebraical sense. It has, indeed, size, viz.,
its length; but with this is conjoined another important property, its direction.
Taken as a whole, it is a Vector. In contrast with this, an ordinary quantity,
having size only, is a Scalar."
Following the footsteps of Oliver Heaviside, we define a vector as a magnitude
and direction grouped together.

There are two ways to approach problems involving vectors. The first way
is the way of geometry. The second way is the way of algebra. Let us consider
the problem of adding two vectors in a two-dimensional space as an example:

C⃗ = A⃗+ B⃗ . (1.1.1)

The geometric approach to the problem suggests that we need to draw three
vectors as shown in Figure 1.1.1 A) and reason that the identity given by equa-
tion (1.1.1) holds as the result of following vectors A⃗ and B⃗ in Figure 1.1.1 A)
is the same as the result of following vector C⃗ : both paths lead us from point
P1 to point P2. The three vectors, i.e., A⃗, B⃗ , and C⃗ , form a triangle. Then the
length of the side of the triangle formed by vector C⃗ can be deduced from the
law of cosines as

C =
√︂
|A⃗|2 +|B⃗ |2 −2|A⃗||B⃗ |cos(α). (1.1.2)
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Figure 1.3.8: Interface between two dissimilar soft magnetic materials.

Second, we apply the main theorems for divergence (1.1.46) and curl (1.1.45)
to the first and the second equation, respectively:

Ó

S
B⃗ ·dS⃗ = 0 (i),

∮︂

L
H⃗ ·dl⃗ = I f (ii).

(1.3.24)

Here S is the closed surface that bounds the volume V , L is the closed loop
that bounds the surface S′, and I f is the total free current that crosses the
open surface S′.

Next, we will derive the interface conditions for the magnetostatic field
by considering the interface between two dissimilar soft magnetic materials.
The interface is depicted in Figure 1.3.8. Let us consider the Gaussian box on
the left side of the figure. The box is assumed to be so small that the magnetic
field above the interface, B⃗ 2, is constant all over the box. The same can be
said about the magnetic field below the interface, B⃗ 1. Therefore, the net flux
of the magnetic field through the vertical facets of the box equals zero. Then
to satisfy the identity (i) in (1.3.24), the fluxes of the magnetic field through
the horizontal facets of the box must balance each other out:

An̂ · B⃗ 1 = An̂ · B⃗ 2.

The scalar A in the last equation is the area of the top or the bottom facet of
the box. The last equation can be simplified as

n̂ · B⃗ 1 = n̂ · B⃗ 2. (1.3.25)

Next, let us consider the Amperian loop depicted in the right half of Figure
1.3.8. The loop is so small that the field H⃗ 2 above the interface is constant
across the loop. The same can be said about the vector field H⃗ 1 below the
interface. We can split the integral in the second equation of (1.3.24) in four
parts like so:

∮︂
H⃗ ·dl⃗ =

∫︂
H⃗ ·dl⃗ 1 +

∫︂
H⃗ ·dl⃗ 2 +

∫︂
H⃗ ·dl⃗ 3 +

∫︂
H⃗ ·dl⃗ 4 = I f . (1.3.26)
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As soon as H⃗ 1 and H⃗ 2 are assumed to be constant across the loop, the first
and the third integrals cancel each other out. Then equation (1.3.26) can be
rewritten as ∮︂

H⃗ ·dl⃗ =
∫︂

H⃗ ·dl⃗ 2

⏞ ⏟⏟ ⏞
I2

+
∫︂

H⃗ ·dl⃗ 4

⏞ ⏟⏟ ⏞
I4

= I f .

Then assuming that the segments l2 and l4 are L meters long, we rewrite the
last equation as

−H⃗ 2 · (n̂ × t̂ )L⏞ ⏟⏟ ⏞
I2

+ H⃗ 1 · (n̂ × t̂ )L⏞ ⏟⏟ ⏞
I4

= K⃗ f · t̂L⏞ ⏟⏟ ⏞
I f

. (1.3.27)

The unit vector t̂ in the last equation is normal to the loop such that

− dl⃗ 2⃓⃓
dl⃗ 2

⃓⃓ = dl⃗ 4⃓⃓
dl⃗ 4

⃓⃓ = n̂ × t̂ ,

see Figure 1.3.8. By observing (1.1.7) we simplify equation (1.3.27) as the fol-
lowing (︂(︁

H⃗ 1 − H⃗ 2
)︁× n̂

)︂
· t̂ = K⃗ f · t̂ . (1.3.28)

In other circumstances just discarding t̂ in the last equation can be risky: the
fact that projections of the two vectors,

(︁
H⃗ 1−H⃗ 2

)︁×n̂ and K⃗ f , on the unit vec-
tor t̂ are equal does not imply that the vectors themselves are equal. Equation
(1.3.28), however, must hold for any choice of t̂ . Thai is, if we rotate the loop
such that t̂ draws a circle on the plane tangential to the interface, equation
(1.3.28) must hold for all rotated instances of the loop. The last is only possi-
ble if (︁

H⃗ 1 − H⃗ 2
)︁× n̂ = K⃗ f ,

or, what is the same, see (i) in (1.1.5),

n̂ × H⃗ 2 − n̂ × H⃗ 1 = K⃗ f . (1.3.29)

Then we can combine the last equation with (1.3.25) to write down the final
version of the conditions on an interface between two dissimilar magnetic
materials

n̂ · B⃗ 2 = n̂ · B⃗ 1 (i),
n̂ × H⃗ 2 − n̂ × H⃗ 1 = K⃗ f (ii).

(1.3.30)

1.4 LINEAR ALGEBRA

In this section we extend the notion of vectors to column vectors. We denote
a column vector by a lowercase boldface Latin letter:

c =

⎡
⎢⎢⎢⎢⎣

c1

c2

...
cm

⎤
⎥⎥⎥⎥⎦

.
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We denote a matrix by an uppercase boldface letter,

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎦

,

so a system of linear equations in the matrix form has the following appear-
ance:

Ac = b. (1.4.1)

1.4.1 TWO WAYS TO PERCEIVE A MATRIX

THE FIRST WAY TO PERCEIVE A MATRIX

The first way to perceive an m ×n matrix is to see it as an ordered collec-
tion of n column vectors of a length m. There are four fundamental spaces
associated with this perception of a matrix: column space C (A), row space
C (AT ), nullspace N (A), and the left nullspace N (AT ). These four fundamen-
tal spaces constitute the big picture of linear algebra. It is shown in Figure
1.4.1. I have adapted it from Figure 3.5 that can be found on page 184 in [41].
Let us discuss it in more detail.

The column vector b in equation (1.4.1) can be interpreted as a linear com-
bination of columns of the matrix A:

b = c1

⎡
⎢⎢⎢⎢⎣

a11

a21

...
am1

⎤
⎥⎥⎥⎥⎦
+c2

⎡
⎢⎢⎢⎢⎣

a12

a22

...
am2

⎤
⎥⎥⎥⎥⎦
+·· ·+cn

⎡
⎢⎢⎢⎢⎣

a1n

a2n

...
amn

⎤
⎥⎥⎥⎥⎦

. (1.4.2)

Consequently, the column vector b can be perceived as an element of a vec-
tor space spanned by the columns of the matrix A. This vector space is, es-
sentially, the column space C (A) in Figure 1.4.1. All column vectors in C (A),
including b, have m components. The matrix A can be constructed such that
absolutely any column vector that has m components can be represented
as a linear combination of the columns of A. In this case it is said that the
columns of A span the entire vector space Rm . That is, vector space C (A) is
a copy of Rm . On the other hand, the matrix A can be constructed such that
some of the vectors with m components cannot be represented as in (1.4.2).
In this case, it is said that the column space C (A) is a subspace of Rm . The
column vectors orthogonal to C (A) are located in the left nullspace N (AT ).
The left nullspace N (AT ) is an orthogonal complement of the column space
C (A). The last means that a set of m linearly independent column vectors
chosen from C (A) and N (AT ) span the entire vector space Rm . Moreover,
any vector in C (A) is orthogonal to all vectors in N (AT ). In Figure 1.4.1 this
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A=[
a
11

a
12

... a
1n

a
21

a
22

... a
2n

⋮ ⋮ ⋱ ⋮

a
m 1

a
m2

... a
mn

]
n

m

C (A
T
) C (A)

N (A) N (A
T
)

90 90

ℝ
n

ℝ
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Figure 1.4.1: The four fundamental spaces. Adapted from [41]. The rectangles
are schematic representations of multidimensional vector spaces. The 90°
signs indicate that any pair of vectors taken from the respective spaces are
orthogonal.

orthogonality is indicated by 90° sign. The column vectors that fill N (AT ) are,
essentially, the solutions, d , of the following system of linear equations:

AT d = 0.

The left nullspace is never empty. There is always at least one vector in there,
the 0 vector.

Likewise, the rows of the matrix A span the row space C (AT ). The solu-
tions, c , of the following system of linear equations:

Ac = 0

span the nullspace N (A). The two spaces, C (AT ) and N (A), are orthogonal
complements of each other. A set of n linearly independent column vectors
chosen from C (AT ) and N (A) span the entire vector space Rn . Moreover, any
vector in C (AT ) is orthogonal to all vectors in N (A).

The maximal amount of linearly independent vectors that can be chosen
in a vector space defines the dimension of the vector space. The column and
row spaces, i.e., C (A) and C (AT ), have the same dimension. It equals the
rank, r , of the matrix A. Consequently, the null space N (A) and the left null
space N (AT ) have dimensions n − r and m − r , respectively.

We are primarily interested in symmetric matrices, i.e., the square matrices



… Some pages have been omitted ...



1.4. LINEAR ALGEBRA 114

     -0.5         0         0.5         1         1.5    

     -0.4    

     -0.2    

     0    

     0.2    

     0.4    

p
n
=L

−T~pn=M
−1
r
n

F (c)=c
T
A c−2b c     

c
1

c
2

     -0.5         0         0.5         1         1.5         2    

     -2    

     -1    

     0    

     1    

     2    

~p
n
=~r

n

F (~c )=~c
T~
A~c −2

~
b~c

c
1

c
2

A=[2 1

1 20] M=[2 0

0 20 ]

New basesOld (standard) bases

Transformation of 
the bases

k (
~
A)=1.37→n

max
=4

B)A)

-   Staring point

-   The solution

Figure 1.4.10: The same simulation of the steepest descent algorithm as
shown in Figure 1.4.9 B) but with a preconditioner M . The algorithm iter-
ates in the old (standard) bases. The search direction is chosen in the new
bases and transformed into the old (standard) bases.

have to be symmetric. Table 2.1. in [11] provides an overview of most widely
used preconditioners.

Figure 1.4.10 illustrates an application of the steepest descent method with
a preconditioner. The main diagonal of the system matrix in the standard
basis, A, has been chosen as a preconditioner, i.e, Jacobi. The example il-
lustrates that the condition number of the system matrix as well as the total
amount of iterations has decreased ten times due to preconditioning. Note
that the shape of the contour curves of the quadratic form in the new bases,
Figure 1.4.10 B), are closer to the shape of circles than the contour lines of
the quadratic form in the old (standard) basis, Figure 1.4.10 A). That is the
whole point of the preconditioning: to make the shape of the isoparametric
curves of the quadratic form to be as close to the shape of circles as possible
by changing the bases.

1.4.8 CONJUGATE GRADIENT ALGORITHM

The preconditioning considered in the preceding section improves the con-
vergence rate of the steepest descent algorithm. This improvement can be ex-
plained as the following. In general, an iterative algorithm converges faster if
the ellipsoids formed by the isoparametric surfaces of the quadratic form are
of low eccentricity, see discussion on page 107. The preconditioning, on the
other hand, can be interpreted as a change into dissimilar bases (Ẽ ̸= G̃). The
result of this bases change is the lower eccentricity of the ellipsoids formed
by the isoparametric surfaces. For this reason, the steepest descent algorithm
converges faster if iterated in the new (dissimilar) bases. In reality, however,
the algorithm iterates in the old (standard) bases, but it does it so that the
iteration steps being transformed into the new bases are the steps made by
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Figure 1.4.11: Two A-conjugate vectors. It is possible to choose two vectors
in the standard basis such that they are orthogonal to each other in the bases
in which the isoparametric surfaces of the quadratic form are spheres.

the steepest descent algorithm without a preconditioner.
Ultimately, the convergence will be the fastest if the isoparametric surfaces

are multidimensional spheres. In this case, the steepest descent algorithm
will converge in just one step as the negative gradient of the quadratic form
will point to the solution (the center of the spheres) at any starting point. A
good question is: can we push the preconditioning trick to its limits? That
is, while iterating in the standard basis, can we choose the search directions
such as we were iterating in the bases in which the isoparametric surfaces of
the quadratic form are spheres? Strictly speaking: no, we cannot. Such ulti-
mate preconditioner would require M−1 = A−1. On the other hand, if A−1 is
known, there is no need to iterate: just compute the solution as A−1b. How-
ever, the idea of iterating with the ultimate preconditioner is so attractive that
we simply cannot waste it. We will attempt to apply it. This attempt will yield
an algorithm known as conjugate gradient algorithm. In this section we will
label the bases in which the isoparametric surfaces of the quadratic form are
spheres as "new bases". By "old bases" we will mean the standard bases in
which the system of linear equations is formulated. The main idea remains
the same: we will iterate in the old bases, but choose the search directions
wisely in the new bases. The conjugate gradient algorithm rests on two pil-
lars: (i) the notion of A-conjugate vectors and (ii) the search procedure in the
new bases.

Let us consider the notion of A-conjugate vectors first. We can choose two
vectors in the old bases such that they are orthogonal in the new bases. This
simple idea is illustrated in Figure 1.4.11. Indeed, the ideal preconditioner
that makes an isoparametric surface of the quadratic form a sphere is M = A.
That is, in this section we assume that

M = A = LLT , (1.4.108)

see also equation (1.4.107). As it was the case with the preconditioner de-
scribed in the preceding section, we choose the columns of L to be the new
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basis for the output vector b, see equation (1.4.99), and the columns of L−T to
be the new basis for the input vector c , see equation (1.4.98). Suppose there
are two input vectors orthogonal to each other in the new bases:

c̃ T
1 c̃ 2 = 0.

In this case we apply the transformation rule (1.4.26) with Ẽ
−1 = LT :

(︁
LT c 1

)︁T (︁
LT c 2

)︁= 0.

We can rewrite the last equation as

c T
1

(︁
LLT )︁

c 2 = 0,

and then by observing (1.4.108) as

c T
1 Ac 2 = 0.

Any two column vectors that satisfy the last equation are called A-conjugate.
Two A-conjugate vectors are orthogonal to each other in the bases that make
the isoparametric surfaces of the quadratic form spheres. Therefore, if we
wish two vectors to be orthogonal in the new bases, we must make them A-
conjugate in the old bases. Note, that this holds only for vectors that trans-
form as the input vectors (Ẽ = L−T ).

Next, let us consider the second pillar of the conjugate gradient algorithm:
the search procedure in the new bases. The steepest descent algorithm dis-
cussed in the two preceding sections tends to revisit the same search direc-
tions multiple times, see Figure 1.4.9 B), for example. This is not optimal. We
would like to construct the search procedure of the conjugate gradient algo-
rithm such that search directions are not revisited. Consider a quadratic form
F (c̃1, c̃2, c̃3) in the new bases, Figure 1.4.12 A). The isoparametric surfaces of
this quadratic form are concentric spheres. The minimum if the quadratic
form is at the center of the spheres. Assume we start searching for the mini-
mum at the point O, chosen arbitrary. We choose to make our first step along
an arbitrary line L1. Next, we find the point on this line, the point A in Figure
1.4.12 A), at which the quadratic form is at its minimum. If we draw another
arbitrary line, L2, through the point A such that it is perpendicular to the
line L1, it will unavoidably pass through the point, B , which minimizes the
quadratic form on the plane P1 spanned by the lines L1 and L2. This fact can
be better observed in Figure 1.4.12 B). As soon as the point A minimizes the
quadratic form on the line L1, the line L1 at point A is tangential to one of the
isoparametric curves on P1. As the isoparametric curve is a circle, the line
orthogonal to any tangential line unavoidably passes through the center of
the circle, i.e., through the minimum of the quadratic form on the plane P1.
The last implies that the point B that minimizes the quadratic form on the
plane P1 is on the line L2. Note, that there are infinitely many lines that are
orthogonal to L1 at point A. Our observation, however, will remain the same
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if we choose any of these lines: the chosen line will pass through the point
that minimizes the quadratic form on the plain spanned by the chosen line
and L1. It will be another point B and another plain P1, but the observation,
in general, will remain the same.

Let us go back to Figure 1.4.12 A) and draw line L3 through the point B such
that it is perpendicular to the plane P1. It is easy to guess that L3 will pass
through the center of the spheres. Indeed, as point B minimizes the quadratic
form on the plane P1, the plane P1 is tangential to one of the isoparametric
surfaces at point B . As soon as this isoparametric surface is a sphere, the line
orthogonal to any tangential plane passes through the center of the sphere if
it contains the point at which the sphere and the tangential plane intersect.
The last implies that the point that minimizes the quadratic form, i.e., the
center of the sphere, is on the line L3. Therefore, it only remains to find the
point that minimizes the quadratic form along the line L3. This point will be
the global minimum of the quadratic form. Note, that we have reached the
minimum in just three steps. Of course, another time we may get lucky and
construct the plane P1 such that it contains the center of the spheres. In this
case we will be able to reach the minimum of the quadratic form in just two
steps. On a really lucky day we may choose L1 such that it contains the center
of the spheres. In this case we will reach the minimum of the quadratic form
in just one step. In general, we may conclude that if we search for the mini-
mum of a quadratic form like that, we will be able to find it in at most three
steps. Note, this search procedure makes sense only if the isoparametric sur-
faces of the quadratic form are spheres. Finally, we assume that this search
procedure can be extended to a general m-dimensional quadratic form. We
just need to keep on construing search lines, Li , and minimize the functional
along them. Each new search line must be orthogonal to all search lines
that are already constructed and must contain the minimum of the quadratic
form on the last search line. Sooner or later we will not be able to construct a
new search line as the amount of constructed search lines equals the amount
of dimensions of the space, m. The minimum of the quadratic form on the
last search line being transformed into the old bases is the solution we are
looking for. In the case of an m-dimensional quadratic form the solution will
be reached in at most m steps.

Next, let us derive the conjugate gradient algorithm by incorporating the
two pillars discussed above into the steepest descent algorithm. The idea is
the following. We iterate in the old (standard) bases such that the iteration
steps in the new bases follow the search procedure discussed above. For that
we need to construct each new search direction such that it is perpendicular
to all previous search directions in the new bases. The notion of A-conjugate
vectors will help us to do so.

Suppose we have chosen a starting point in the old bases: c 0. It transforms
into the point O in the new bases, see Figure 1.4.12. We begin the search
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1.5 CALCULUS OF VARIATIONS

1.5.1 VARIATIONAL METHOD

Let us consider a problem of calculating an electric scalar potential induced
by two concentric spherical conductors. The inner conductor is a spherical
ball. The outer conductor is a spherical shell. The inner conductor is at a po-
tential ofΦ0 Volts. The outer shell is grounded. The space between the outer
surface of the ball and the inner surface of the shell is empty. This problem
can be solved by integrating the following partial differential equation:

∇2Φ= 0, (1.5.1)

and applying proper boundary conditions as it is done in section 6.1.2. There
is, however, an alternative approach.

Static systems do not change their state because the potential energy in
the static state is minimal. The most illustrative example of such static sys-
tem is a ball in a parabolic pit. The potential energy due to gravity in this
configuration is minimal. All other positions of the ball in the pit correspond
to higher potential energies. Consequently, if the ball finds itself in a position
displaced from the bottom of the pit, it moves about until it settles down in
the bottom of the pit. The ball in the bottom of the pit is the static state of
the system. The two spherical conductors that we would like to analyze are
somewhat like the ball in the bottom of the pit. That is, the electric charge
in the conductors settles in the static state shortly after the inner conductor
get attached to the voltage source. The potential energy in the static state is
minimal possible. It is stored in the electrostatic field and can be evaluated
as

F (Φ) = ϵ0

2

Ñ

Ω
| E⃗ |2 dV = ϵ0

2

Ñ

Ω
| ∇⃗Φ |2 dV , (1.5.2)

whereΩ is all the space in the universe, see, for instance, section 2.4.3 in [22].
As the electrostatic field in this configuration exists only in between the con-
ductors, we can restrict the domain of integration, Ω, to the space between
the conductors. The electrostatic potential we are looking for minimizes the
potential energy (1.5.2) for given boundary conditions. The boundary condi-
tions in this case are: Φ=Φ0 Volts on the inner boundary and Φ= 0 Volts on
the outer boundary ofΩ, see Figure 6.1.2. Therefore, we can replace the task
of direct integration of the partial differential equation (1.5.1) with the task
of minimizing the potential energy given by equation (1.5.2). This method of
solving problems is called variational method. In the framework of the varia-
tional method, the expression being minimized does not necessarily have to
be the potential energy. Any expression that is minimized by the solution to
the initial partial differential equation will do. In the framework of the varia-
tional method such expression is called a functional. Arguments of function-
als are independent functions, not independent variables. A functional maps
functions to real numbers.



CHAPTER 1. PRELIMINARIES 127

To be able to apply the variational method in the framework of the finite
element method, we need to answer the following three questions:

• How to convert a partial differential equation into a functional?

• How to convert a functional into a partial differential equation?

• How to minimize a functional?

The first and the third questions above are quite reasonable. The second
question is suspicious at very least. Indeed, why anyone would want to con-
vert the functional back into the partial differential equation just after hav-
ing converted the partial differential equation into the functional? The right
place to answer this question is chapter 4. Here is a brief summary of the
answer. The functional encodes not only the partial differential equation. It
also encodes some boundary and interface conditions. That is, minimization
of the functional not only solves the partial differential equation, but also en-
forces some boundary and interface conditions. The boundary and interface
conditions embedded into the functional are called natural. A boundary or
interface condition is essential if it is not natural. Essential boundary and es-
sential interface conditions are not taken care of by the functional (it is not
natural for the functional to do so) and need to be enforced elsewhere, see
section 4.1.5 for more details. In short, the procedure for converting the func-
tional back to the partial differential equation can be perceived as a some
kind of inventorization of boundary and interface conditions, see also [25]
and [30]. It helps to sort the boundary and interface conditions in two cate-
gories: natural and essential.

Chapter 5 is dedicated to the third question above. We will answer the first
and the second questions in sections 1.5.3 and 1.5.4, respectively. But before
we do so, we need to consider abstract vector spaces.

1.5.2 ABSTRACT VECTOR SPACES

The ordinary vectors were introduced by Oliver Heaviside in the end of the
nineteenth century, see section 1.1.1. Since the nineteenth century the no-
tion of a vector has become a bit more abstract . A higher abstract level offers
an advantage: it allows reusing the same linear algebra in seemingly different
circumstances. That is, all good things that constitute linear algebra, such
as vectors, matrices, linear transformations, eigenvalues, etc., can, for exam-
ple, be used for studying electric signals as well as for studying propagation
of quantum mechanical objects as both, electric signals and wave functions,
can be perceived as elements of abstract vector spaces. In this section we
will consider the definition of abstract vectors. To avoid a confusion we will
denote ordinary vectors in two- and three- dimensional Euclidean pace by a
Latin letter with an arrow, v⃗ or A⃗, a column vector as a lower-case boldface
Latin letter, v , and an abstract vector as a lower-case boldface Latin letter
with an arrow, v⃗ .
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An abstract vector is defined as an element of an abstract vector space.
The abstract vector space is a collection of elements that satisfy the following
rules:

• a⃗ + b⃗ = b⃗ + a⃗

• a⃗ + (b⃗ + c⃗) = (a⃗ + b⃗)+ c⃗

• For every two vectors a⃗ and b⃗ there exists a third vector c⃗ such that
a⃗+c⃗ = b⃗. All three vectors, a⃗, b⃗, and c⃗ , belong to the same vector space.
This implies existence of a unique zero vector, a⃗ + 0⃗ = a⃗.

• α(βa⃗) = (αβ)a⃗

• (α+β)a⃗ =αa⃗ +βa⃗

• α(a⃗ + b⃗) =αa⃗ +αb⃗

• 1a⃗ = a⃗

In these rules, a⃗, b⃗, c⃗ , and 0⃗ are abstract vectors, elements of an abstract
vector space; α, β, and 1 are scalars. A sum of any two vectors from a vector
space must be a valid vector from the same vector space. A scaled version of
a vector must belong to the vector space which contains the initial (unscaled)
vector.

To enjoy all good things linear algebra has to offer, we need to find a way to
convert abstract vectors and their linear transformations into column vectors
and matrices, respectively. To this end, we can adapt the conversion proce-
dure we have used on pages 74 - 79 to convert the multidimensional vectors
and linear transformations into the column vectors and matrices. This is an
easy task as the multidimensional vectors discussed on pages 74 - 79 are, es-
sentially, a specific example of abstract vectors. The space of multidimen-
sional vectors, Rm , is spanned by m basis vectors. An abstract vector space,
in general, can have infinite amount of dimensions. Therefore, to generalize
the discussion on pages 74 - 79 to the abstract vector spaces we just need to
assume that the bases for input and output vectors, {e⃗ i } and {g⃗ i }, can con-
tain an infinite amount of basis vectors. Consequently, the column vectors in
equations (1.4.11), (1.4.12), and the matrix (1.4.15) can, in general, have in-
finite amount of components. Furthermore, we have to assume that the im-
plementation of the inner product, 〈a⃗, b⃗〉, for various types of abstract vectors
can differ from (1.4.19) although all implementations of the inner product
must yield a scalar and must obey the four rules (1.4.7).

Having a valid abstract vector space and a valid inner product we can chose
two bases, convert the abstract vectors and their transformations into col-
umn vectors and matrices and exercise linear algebra regardless of what the
abstract vectors are, exactly. If we manage to convince ourselves that ele-
phants satisfy the seven rules above and can find a valid inner product of two
elephants such that we can linearly decompose an elephant as in (1.4.8), we
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CHAPTER 2

ELECTROSTATICS

2.1 ELECTRIC SCALAR POTENTIAL

2.1.1 PARTIAL DIFFERENTIAL EQUATION

The electric field in static approximation is described by equations (1.3.10).
As discussed in section 1.3.2, the electrostatic field is conservative under any
circumstances. Consequently, we can derive the electrostatic field from a gra-
dient of the electric scalar potential:

E⃗ =−∇⃗Φ. (2.1.1)

Then the second equation in (1.3.10) is satisfied automatically as a curl of a
gradient of a scalar field always equals zero. Next, we rewrite the first equa-
tion in (1.3.10) as

∇⃗ ·
(︂
ϵE⃗

)︂
= ρ f .

By substituting (2.1.1) into the last equation we arrive into the following par-
tial differential equation:

−∇⃗ ·
(︂
ϵ∇⃗Φ

)︂
= ρ f . (2.1.2)

This equation is an adequate description of the most problems in electro-
statics. We assume that the permittivity, ϵ, is a real-valued scalar function of
spatial coordinates. The permittivity is discontinuous on interfaces between
dissimilar dielectric materials. In the literature on the finite element method
equation (2.1.2) is known as div-grad equation.

2.1.2 DIRICHLET, NEUMANN, AND ROBIN BOUNDARY

CONDITIONS

Equation (2.1.2) describes a family of solutions. A selection of the unique
solution out of the family of solutions requires proper boundary conditions.
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Figure 2.1.1: Examples of simple domains.

There are three different boundary conditions relevant to problems in elec-
trostatics: the Dirichlet boundary condition, the Neumann boundary condi-
tion, and the Robin boundary condition. In the following we will prove that
the Dirichlet and Robin boundary conditions guarantee the uniqueness of
the solution to (2.1.2) and the Neumann boundary condition can only guar-
antee a solution up to an arbitrary constant.

The Dirichlet boundary condition is considered first. Let us assume that
equation (2.1.2) is specified in a simple three-dimensional domainΩbounded
by a closed surface Γ as schematically depicted in Figure 2.1.1 A). The Dirich-
let boundary condition specifies the value of electric potential on the bound-
ary of the domain Γ. The partial differential equation (2.1.2) written together
with the Dirichlet boundary condition,

−∇⃗ ·
(︂
ϵ∇⃗Φ

)︂
= ρ f in Ω (i),

Φ= η on Γ (ii),
(2.1.3)

constitutes a boundary value problem. Note, thatηmay vary along the bound-
ary Γ or may simply be a constant. Let us assume that there are two solu-
tions to the boundary value problem (2.1.3), namely Φa and Φb . Then the
difference between them,Φd =Φa −Φb , satisfies the following homogeneous
boundary value problem:

∇⃗ ·
(︂
ϵ∇⃗Φd

)︂
= 0 in Ω (i),

Φd = 0 on Γ (ii).
(2.1.4)

Next, let us substituteΨ=Φd andΦ=Φd into the first Green’s scalar identity
(1.1.58):

Ñ

Ω

[︂
Φd ∇⃗ ·

(︂
ϵ∇⃗Φd

)︂

⏞ ⏟⏟ ⏞
=0

+
(︂
ϵ∇⃗Φd

)︂
· ∇⃗Φd

]︂
dV =

Ó

Γ

(︂
Φdϵ∇⃗Φd

)︂
·dS⃗.

The first term in the last equation equals zero as suggested by the first equa-
tion in (2.1.4). Then, after simplifying the rest of the terms, the last equation
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becomes Ñ

Ω
ϵ | ∇⃗Φd |2 dV =

Ó

Γ
Φd

(︂
ϵ∇⃗Φd

)︂
·dS⃗. (2.1.5)

According to (ii) in (2.1.4),Φd equals zero on Γ. This forces the integral on the
right-hand side of (2.1.5) to zero implying that

Ñ

Ω
ϵ | ∇⃗Φd |2 dV = 0. (2.1.6)

The integrand in the last equation is non-negative. Therefore, the integral in
the last equation equals zero only if ∇⃗Φd = 0 at all points of the domain. The
last means that Φd equals some constant Φ0. On the other hand, Φd = 0 on
Γ, i.e., (ii) in (2.1.4), meaning that Φ0 = 0. Thus, Φd = 0 at all points of the
domain and Φa = Φb at all points of the domain. The last implies that the
Dirichlet boundary condition specified on the boundary Γ of the simple do-
main shown in Figure 2.1.1 A) ensures uniqueness of the solution to (2.1.2).
Similar prove can be made for any other domain with multiple boundaries.
Examples of two such domains are shown in Figures 2.1.1 B) and C). To prove
the solution uniqueness in a domain with multiple boundaries, the integral
on the right-hand side of (2.1.5) must be written separately for each bound-
ary:

Ó

Γ
Φd

(︂
ϵ∇⃗Φd

)︂
·dS⃗ =

Ï

Γ1

Φd

(︂
ϵ∇⃗Φd

)︂
·dS⃗ +

Ï

Γ2

Φd

(︂
ϵ∇⃗Φd

)︂
·dS⃗ + ... (2.1.7)

Then each integral on the right-hand side of the last equation is driven to zero
by specifying Dirichlet boundary conditions on the corresponding boundary.
Consequently, equation (2.1.6), the discussion immediately below it, and the
conclusion remain the same.

Next, let us consider the Neumann boundary condition applied on the
boundary Γ of the domain Ω depicted in Figure 2.1.1 A). The corresponding
boundary value problem can be specified as the following:

−∇⃗ ·
(︂
ϵ∇⃗Φ

)︂
= ρ f in Ω (i),

ϵn̂ · ∇⃗Φ=σ on Γ (ii).
(2.1.8)

Similarly to the case of the Dirichlet boundary condition, we assume that
there are two different solutions to (2.1.8), Φa and Φb . Then the difference
Φd =Φa −Φb satisfies the following homogeneous boundary value problem:

∇⃗ ·
(︂
ϵ∇⃗Φd

)︂
= 0 in Ω (i),

ϵn̂ · ∇⃗Φd = 0 on Γ (ii).

Equation (2.1.5) holds for this boundary value problem as well. The Neu-
mann boundary condition drives the integral on the right-hand side of (2.1.5)
to zero. To see this, we separate the vector normal to the boundary, n̂, from
dS⃗:

dS⃗ = n̂dS.
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Box 2.1.1: Static scalar boundary value problem

The electrostatic phenomena are described by the following static
scalar boundary value problem:

−∇⃗ ·
(︂
ϵ∇⃗Φ

)︂
= ρ f in Ω (i),

Φ= η on ΓDn (ii),
ϵn̂ · ∇⃗Φ+γΦ=σ on ΓRm (iii),

Φ+ =Φ− on ΓI k (iv),
ϵ+n̂ · ∇⃗Φ+−ϵ−n̂ · ∇⃗Φ− =−κ f on ΓI k (v).

(2.1.20)

• The Robin boundary condition (iii) becomes the Neumann
boundary condition for γ = 0. In the case of the Robin bound-
ary condition:

γ> 0 on ΓRm . (2.1.21)

• Specification of the Dirichlet (ii) or the Robin (iii) boundary
condition on one of the boundaries ensures the uniqueness of
the solution.

• The Neumann boundary condition, i.e., (iii) with γ= 0, ensures
the uniqueness of the solution with a precision to a constant.
However, if the Dirichlet or Robin boundary condition with γ

as in (2.1.21) is specified on at least one other boundary, the
solution will be unique.

• The presence of the interfaces between the materials, ΓI k , does
not affect the uniqueness of the solution in any way. Equations
(iv) and (v) describe the interface conditions.

• The index "+" refers to the space immediately next to the in-
terface in the direction of vector n̂. The index "−" refers to the
space immediately next to the interface in the direction oppo-
site to n̂.

• The term κ f accommodates the free surface charge on all in-
terfaces between dissimilar materials. The surface charge κ f is
not included in ρ f . Thinking that ρ f = ρ′

f +κ f is wrong.

condition must be set on the boundary of a floating conductor:

Φ+ =Φ− on ΓI k ,

ϵ+n̂ · ∇⃗Φ+ = ϵ−n̂ · ∇⃗Φ− on ΓI k ,

where subscripts ’-’ and ’+’ refer to the inner and outer spaces of the float-
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ing conductor, respectively. The relative permittivity inside the floating con-
ductor can be chosen somewhat arbitrary, but it must have a relatively high
value such as ϵr− = 106, see [26]. In comparison, the relative permittivity
outside the floating conductor is ϵr+ = 1 for vacuum, ϵr+ = 80 for water, and
ϵr+ < 15000 for barium titanate (a ceramic material used in miniature ca-
pacitors). As soon as we treat floating conductors as dielectric materials of
high permittivity, there is no need to add new entries to the general boundary
value problem on their account: they get covered by the interface conditions
(iv) and (v) of (2.1.20).

2.3 TWO-DIMENSIONAL PROBLEMS

By default, all problems in electromagnetics are three-dimensional. As three-
dimensional problems require more computer resources than two- dimen-
sional problems, it is always beneficial to recast a three-dimensional prob-
lem into a two-dimensional problem. The last is possible if the initial three-
dimensional problem exhibits a symmetry. We can distinguish two kinds
of symmetries with this respect: the translation symmetry and the rotation
symmetry.

Let us consider the translation symmetry first. The translation symme-
try arises in problems that describe straight, infinitely long cable-like struc-
tures with a cross section that does not change along the structure. All cross
sections made by planes perpendicular to the axis of the structure are the
same. We can choose one cross section and use it as a two-dimensional pla-
nar problem domain.

The rotation symmetry arises in problems that describe bodies of revolu-
tion. In such problems we adapt the cylindrical coordinate system, see Figure
B.0.1. In doing so, we orient the cylindrical coordinate system such that the
z axis coincides with the axis of rotation symmetry. Then the content of all
r z half-planes will be identical. We choose one r z half-plane and treat it as a
two-dimensional axisymmetric domain.

A good question may arise at this moment. Why have we chosen the cylin-
drical coordinate system to describe an axisymmetric domain? The spherical
coordinate system can be used to exploit a rotation symmetry as well. The
answer to this question is the following. The deal.II library assumes that two-
dimensional problem domains are described in the Cartesian coordinate sys-
tem. We can treat the cylindrical coordinates r and z as Cartesian with a bit
of extra effort. We cannot do this easily with the spherical coordinates. Let us
elaborate on this.

Strictly speaking, the coordinates r and z are not Cartesian coordinates.
They are cylindrical coordinates. For instance, if we wish to calculate a diver-
gence, we will have to use equation (B.0.7) with the middle therm discarded:

∇⃗ · F⃗ = 1

r

∂

∂r

(︂
r Fr

)︂
+ ∂Fz

∂z
.
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Simply using equation (1.1.28) with y discarded and x replaced by r :

∇⃗ · F⃗ = ∂Fr

∂r
+ ∂Fz

∂z
(wrong)

will not do. However, for the purpose of evaluating the integrals that consti-
tute the numerical recipes we can treat the r and z coordinates as Cartesian.
Consider, for example, the recipe on page 333. To be able to evaluate the inte-
grals that constitute the entries of the system matrix, Ai j , and the right-hand
side, bi , we need to evaluate functions, function gradients, area elements,
and arc length elements. Evaluating functions is straightforward: function
evaluation in the r z plane does not differ from function evaluation in the x y
plane. The expression for gradient in the two-dimensional Cartesian coordi-
nate system, i.e.,

∇⃗= ∂

∂x
î + ∂

∂y
ĵ , (2.3.1)

is identical to that of the cylindrical coordinate system under the assumption
of rotation symmetry:

∇⃗= ∂

∂r
r̂ + ∂

∂z
ẑ.

The last is, essentially, equation (B.0.9) with the middle term discarded. Due
to the fact that the last two equations are identical the gradient in the r z half-
plane of the cylindrical coordinate system and the gradient in the Cartesian
coordinate system can be evaluated by the same algorithm. Therefore, we
can use the code of deal.II library (it expects the two coordinates to be Carte-
sian x and y) for evaluating the gradients in the r z half-plane with no ex-
tra effort: we just need to interpret the coordinates as r and z, not as x and
y . The area and the arc length elements are different in the x y and the r z
planes. These elements in the r z half-plane, however, can be converted into
corresponding Cartesian elements with a little effort. More on this in section
5.6.1. It must be stressed that the gradient in the spherical coordinate system
under assumption of rotation symmetry,

∇⃗Φ= ∂Φ

∂r
r̂ + 1

r

∂Φ

∂θ
θ̂,

(here r is measured from the origin, not from the axis of symmetry) cannot
be easily converted to the form of equation (2.3.1). This is, essentially, the
reason why we prefer the cylindrical coordinate system over the spherical
coordinate system when describing axisymmetric problem domains.

2.4 REFLECTION SYMMETRY

In the preceding section we have discussed how to reduce a three-dimensional
problem to a two-dimensional problem by exploiting the translation and ro-
tation symmetries. In this section we will consider how to reduce a size of a
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CHAPTER 3

MAGNETOSTATICS

The magnetostatic part of the Maxwell’s equations is given by (1.3.23). Equa-
tion (i) in (1.3.23) suggests that magnetostatic field, B⃗ , is always solenoidal.
The last is true regardless the source of magnetostatic field. The magneto-
static field induced by free currents curls around current lines. The magneto-
static field due to magnetization curls around bound currents. The auxiliary
vector field H⃗ also curls around free-current lines. Thus, in the most gen-
eral case, both, the magnetostatic field B⃗ and the auxiliary field H⃗ contain
solenoidal vector components and cannot be derived from a scalar poten-
tial. Therefore, in the most general case, problems in magnetostatics must
be formulated in terms of a vector potential. There are, however, exceptions
that allow the auxiliary vector field H⃗ to be derived as a gradient of a mag-
netic scalar potential as H⃗ does not curl around bound currents. These ex-
ceptions correspond to the first two options listed on page 65. There are two
kinds of magnetic scalar potentials: the total magnetic scalar potential and
the reduced magnetic scalar potential. In this chapter we will first consider
the total and reduced magnetic scalar potentials and then we will consider
the vector magnetic potential.

3.1 TOTAL MAGNETIC SCALAR POTENTIAL

Suppose that the problem we would like to solve allows us to exclude all free
volume currents, J⃗ f , and all free surface currents, K⃗ f , from the problem do-
main. That is,

J⃗ f = 0 and K⃗ f = 0.

This corresponds to the first two options in the list for auxiliary field H⃗ on
page 65. As soon as there is no free currents in the problem domain, the
auxiliary vector field H⃗ is purely conservative. Consequently, we can derive
the auxiliary vector field H⃗ as a gradient of a total magnetic scalar potential:
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I

H⃗ I IH⃗

Helmholtz coils

A) B)

Figure 3.1.1: A) An inductor with a toroidal magnetic core. B) A toroidal mag-
netic core in Helmholtz coils. A side-view of the Helmholtz coils is shown.
The solid current lines of the coils are located in front of the dotted lines.

H⃗ =−∇⃗Ψ. (3.1.1)

There are, however, exceptions. Let us consider the inductor with a toroidal
magnetic core depicted in Figure 3.1.1 A). Here, we assume that the problem
domain is the interior space of the magnetic core. The problem domain does
not contain any free currents. All free currents go around the problem do-
main. Yet, we cannot apply (3.1.1) as the field lines of H⃗ are closed. This
example, however, does not suggests that (3.1.1) cannot be used in all prob-
lems defined in multiply-connected domains1. The configuration shown in
Figure 3.1.1 B) illustrates this very point: the magnetic material is shaped as a
toroid, but H⃗ field lines are not closed, so we can use equation (3.1.1) in this
case. A simple test can be suggested to spot the problem domains in which
equation (3.1.1) cannot be applied: if it is possible to draw an Amperian loop
within the problem domain such that non-zero free current crosses the open
surface spanned by the loop, then equation (3.1.1) cannot be applied. All the
points of the loop must lie within the problem domain. Figure 3.1.2 illustrates
application of this test to the problem domain depicted in Figure 3.1.1 A). In
this case it is possible to draw an Amperian loop within the domain such that
non-zero current (4I , in this particular case) crosses the surface spanned by
the Amperian loop. Therefore, the total magnetic scalar potential cannot be
used in this domain. It is not possible to draw such an Amperian loop in the
domain shown in Figure 3.1.1 B). Therefore, the total magnetic scalar poten-
tial can be applied in this domain. Note, that it is possible to draw an Ampe-

1This is just an alternative name for a domain that looks like a doughnut or a pretzel.
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I

Amperian loop

Surface spanned by 
the Amperian loop

Current 4I crosses the
surface  spanned by 
the Amperian loop 

Figure 3.1.2: An Amperian loop drawn within the problem domain depicted
in Figure 3.1.1 A). The total current of 4I ̸= 0 crosses the surface spanned by
the Amperian loop. Therefore, the total magnetic scalar potential cannot be
applied in this problem domain.

rian loop within the toroid shown in Figure 3.1.1 B) and attach to it a surface
of a very exotic shape such that some current lines will cross the surface. A
careful consideration in this case, however, will reveal that the total current
crossing the surface is zero as the amount of current lines that cross the sur-
face in one direction equals the amount of current lines that cross the surface
in the opposite direction, so the net current will be identical to zero and the
main conclusion, i.e., the applicability of (3.1.1), will remain the same.

As discussed above, we assume that there are no free currents in the prob-
lem domain. A good question is: what induces the magnetic field, exactly,
if there are no free currents? There are two answers. The first is - free cur-
rents outside the problem domain. The information about the free currents
outside the problem domain is coupled to the problem domain implicitely
via boundary conditions. The second answer is - permanent magnets. In
the discussion below we will describe the permanent magnets by means of
scaled magnetic volume and surface charge densities. That is, we will treat
the permanent magnets as field sources. For this reason, we need to add the
magnetization of the permanent magnets into consideration. Let us do this
next.

We split all magnetic materials on hard magnetic materials and soft mag-
netic materials. There is no well-defined boundary between hard and soft
magnetic materials. The magnetic materials are sorted in these two cate-
gories based on the value of their coercivity. Magnetic materials with high
coercivity are categorized as hard. Neodymium magnets, for instance, are
made of hard magnetic material. Magnetic materials with low coercivity are
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Box 3.3.1: Static vector boundary value problem

The magnetostatic phenomena are described by the following static
vector boundary value problem:

∇⃗×
(︂ 1

µ
∇⃗× A⃗

)︂
= J⃗ f in Ω (i),

n̂ × A⃗ = n̂ ×G⃗ on ΓDn (ii),
1

µ
n̂ ×

(︂
∇⃗× A⃗

)︂
+γn̂ ×

(︂
n̂ × A⃗

)︂
= Q⃗ on ΓRm (iii),

n̂ × A⃗+ = n̂ × A⃗− on ΓI k (iv),
1

µ+
n̂ ×

(︂
∇⃗× A⃗+

)︂
− 1

µ−
n̂ ×

(︂
∇⃗× A⃗−

)︂
= K⃗ f on ΓI k (v).

(3.3.31)

• No gauge is applied to the vector potential. The boundary value
problem has many solutions. It, however, yields a unique so-
lution for the curl of the vector potential and, thus, a unique
solution for the magnetic field B⃗ .

• The Robin boundary condition (iii) becomes the Neumann
boundary condition for γ = 0. In the case of the Robin bound-
ary condition

γ> 0.

• Specification of a Dirichlet (ii) or Neumann (iii) or Robin (iii)
boundary condition on one of the boundaries ensures the
uniqueness of the curl of the vector potential.

• The presence of the interfaces between dissimilar materials,
ΓI k , does not affect the uniqueness of the solution in any way.
Equations (iv) and (v) describe the interface conditions.

• The index "+" refers to the space immediately next to the in-
terface in the direction of vector n̂. The index "−" refers to the
space immediately next to the interface in the direction oppo-
site to n̂.

• The vector field K⃗ f accommodates the surface free-current

density on interfaces. The volume free-current density, J⃗ f , does

not contain K⃗ f . Thinking that J⃗ f = J⃗
′
f + K⃗ f is wrong.

3.3.1 C). The results above can be extended to a problem domain with an
arbitrary amount of boundaries and interfaces.

Note, that the identity (3.3.29) holds due to the fact that we have replaced
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the initial interface condition dictated by the Maxwell’s equations, i.e., (i) in
(3.3.15), with a more restrictive interface condition (i) in (3.3.17). Without
this replacement it would be somewhat difficult to drive the integral I3 in
(3.3.20) to zero. Consequently, the integral I3 would have precipitated on the
right-hand side of equation (3.3.30) disturbing the uniqueness of the curl of
the solution.

The Box 3.3.1 summarizes the static vector boundary value problem. It
is, essentially, the boundary value problem (3.3.18) with a few modifications.
First of all, we allow for an arbitrary amount of boundaries and interfaces.
The indexes n, m, and k index them. Second, we use plus and minus sign in
the subscripts instead of integer numbers to label the spaces on the opposite
sides of the interfaces.

3.4 MAGNETIC VECTOR POTENTIAL IN TWO

DIMENSIONS

Three-dimensional simulations are demanding in terms of computational
resources. This is even more so if a problem is formulated in terms of a vec-
tor potential. For this reason a reduction of a three-dimensional problem
to two dimensions is always desirable. It is only possible to reduce a three-
dimensional problem to two dimensions if it possesses a symmetry. There
are two relevant types of symmetry: translation and rotation. On the other
hand, the magnetic vector potential in two dimensions can be either an out-
of-plane vector or an in-plane vector, see the discussion on page 8. There-
fore, there are four possible combinations of symmetries and types of two-
dimensional vectors. They are summarized in Table 3.4.1. We will consider
these types of problems one-by-one in the four following sections.

3.4.1 SCALAR PLANAR PROBLEM

A three-dimensional problem that exhibits translation symmetry gives rise to
a two-dimensional scalar planar problem if the two-dimensional vector po-
tential is an out-of-plane vector, see Table 3.4.1. Let us consider a straight,
infinitely-long cable-like structure aligned with the z axis of a Cartesian co-
ordinate system in which the vector potential, A⃗, is oriented parallel to the z
axis:

A⃗ = 0î +0 ĵ + A(x, y)k̂. (3.4.1)

We also assume that the permeability exhibits the translation symmetry as
well:

µ=µ(x, y). (3.4.2)

Then the volume free-current density, J⃗ f , has to have the same form:

J⃗ f = 0î +0 ĵ + J f (x, y)k̂. (3.4.3)
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Translation Rotation

Out-of-plane A⃗ Scalar planar Scalar axisymmetric
problem problem

A A′

In-plane A⃗ Vector planar Does not exist
problem

A⃗

Table 3.4.1: Two-dimensional problems formulated in terms of magnetic vec-
tor potential.

We can establish this fact by substituting (3.4.1) and (3.4.2) into left-hand side
of (i) in (3.3.31), differentiating as prescribed by equation (1.1.29), and dis-
covering that the current density on the right-hand side must be in the form
given by equation (3.4.3). We reduce such a three-dimensional problem to
two dimensions by selecting one of the cross sections made by a plane per-
pendicular to the z axis as a problem domain.

As soon as we are looking for a solution in a form of (3.4.1), the following
holds:

∇⃗ · A⃗ = 0,

see equation (1.1.28). The last identity is the Coulomb gauge. Therefore, we
can conclude that the vector potential that exhibits this type of translation
symmetry is implicitly gauged. The last implies that we can expect a unique
solution in terms of the vector potential.

In the current configuration the vector potential (3.4.1) is an out-of-plane
vector, see discussion on page 8. Therefore, the magnetic field vector is an
in-plane vector. We can tailor the definition of the magnetic vector potential
(3.3.1) to the current configuration as

B⃗ = ∇⃗ V× A. (3.4.4)

First, let us adapt the partial differential equation, i.e., (i) in (3.3.31), to
current configuration. We can express the curl of the vector potential given
by (3.4.1) as

∇⃗× A⃗ =

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

î ĵ 0

∂

∂x

∂

∂y
0

0 0 A

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓
= ∂A

∂y
î − ∂A

∂x
ĵ . (3.4.5)
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CHAPTER 4

VARIATIONAL FORMULATIONS

4.1 STATIC SCALAR BOUNDARY VALUE PROBLEM

4.1.1 HOMOGENEOUS BOUNDARY VALUE PROBLEM

Let us consider the following boundary value problem:

−∇⃗ ·
(︂
ϵ∇⃗Φ

)︂
= ρ f in Ω (i),

Φ= 0 on ΓD (ii),
ϵn̂ · ∇⃗Φ+γΦ= 0 on ΓR (iii).

(4.1.1)

We assume that this boundary value problem is defined on the simple do-
main depicted in Figure 4.1.1 A). The results of the discussion in this section,
however, will not change if the problem domain is configured differently. Fig-
ure 4.1.1 B) provides an example of an alternative configuration of the prob-
lem domain. The Dirichlet and Robin boundary conditions are specified on
the boundaries ΓD and ΓR , respectively. It is assumed that

γ> 0 on ΓR (4.1.2)

for the Robin boundary condition. The Robin boundary condition becomes
Neumann boundary condition if γ= 0.

In this section we perceive the electric scalar potential Φ as an abstract
vector, an element of an abstract vector space V0. An artistic impression of
this vector space is shown in Figure 1.5.1 C). We assume that all elements of
V0 satisfy both boundary conditions, (ii) and (iii) in (4.1.1). The inner product
in V0 is defined by equation (1.5.3). Here it is reprinted in a slightly different
form:

〈Φ,Ψ〉=
Ñ

Ω
ΦΨdV , (4.1.3)

where Ψ is another element of the abstract vector space V0. Next, we per-
ceive the partial differential equation as an operation of linear transforma-
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Ω

Ω

Γ
R

Γ
D

Γ
R

Γ
D

A) B)

Figure 4.1.1: A) The problem domain on which the boundary value problems
(4.1.1), (4.1.16), (4.2.1), and (4.2.19) are defined. B) An alternative configura-
tion of the problem domain. Two different domains are shown to illustrate
that the exact configuration of the boundaries is not important for the dis-
cussion made in the text.

tion. That is, we express equation (i) in (4.1.1) in terms of a linear transfor-
mation:

T (Φ) = ρ f . (4.1.4)

Here by linear transformation T we mean the following composition of dif-
ferential operators:

T (...) =−∇⃗ ·
(︂
ϵ∇⃗(...)

)︂
. (4.1.5)

Next, let us compose a functional by applying the three-steps procedure de-
scribed on page 132.

In the fist step of this procedure we need to prove that the linear transfor-
mation (4.1.5) is symmetric, i.e., the following identity holds:

〈T (Φ),Ψ〉= 〈Φ,T (Ψ)〉. (4.1.6)

To do so, we note that

〈T (Φ),Ψ〉=−
Ñ

Ω
Ψ∇⃗ ·

(︂
ϵ∇⃗Φ

)︂
dV.

Application of the second Green’s scalar identity (1.1.59) to the last equation
yields

〈T (Φ),Ψ〉=−
Ñ

Ω
Φ∇⃗ ·

(︂
ϵ∇⃗Ψ

)︂
dV

⏞ ⏟⏟ ⏞
〈Φ,T (Ψ)〉

−
Ó

Γ
ϵ
(︂
Ψ∇⃗Φ−Φ∇⃗Ψ

)︂
·dS⃗

⏞ ⏟⏟ ⏞
=0

. (4.1.7)

The second integral in the last equation vanish on all boundaries as both, Φ
and Ψ, satisfy boundary conditions (ii) and (iii) in (4.1.1). That is, by substi-
tuting the boundary conditions (ii) and (iii) in (4.1.1) into the last integral in
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(4.1.7) yields
Ó

Γ
ϵ
(︂
Ψ∇⃗Φ−Φ∇⃗Ψ

)︂
·dS⃗ =

Ï

ΓD

ϵ
(︂
0∇⃗Φ−0∇⃗Ψ

)︂
·dS⃗

⏞ ⏟⏟ ⏞
I0

−
Ï

ΓR

γ
(︂
ΨΦ−ΦΨ

)︂
dS = 0.

(4.1.8)
The first integral on the right-hand side of equation (4.1.7) can be interpreted
as 〈Φ,T (Ψ)〉 implying that (4.1.6) holds if both,Φ andΨ, satisfy the boundary
conditions (ii) and (iii) in (4.1.1). Therefore, the linear transformation (4.1.5)
is symmetric if supplemented with the boundary conditions (ii) and (iii) in
(4.1.1).

In the second step of the procedure described on page 132 we need to
prove that the linear transformation (4.1.5) is positive definite, i.e., the fol-
lowing condition holds for all elements in V0

〈Φ,T (Φ)〉> 0. (4.1.9)

To do so, we rewrite the first Green’s scalar identity (1.1.58) substituting Ψ =
Φ:

Ñ

Ω
Φ∇⃗ ·

(︂
ϵ∇⃗Φ

)︂
dV

⏞ ⏟⏟ ⏞
−〈Φ,T (Φ)〉

+
Ñ

Ω

(︂
ϵ∇⃗Φ

)︂
· ∇⃗ΦdV =

Ó

Γ

(︂
Φϵ∇⃗Φ

)︂
·dS⃗. (4.1.10)

Let us evaluate the last integral in the last equation on both boundaries, ΓD

and ΓR :
Ó

Γ

(︂
Φϵ∇⃗Φ

)︂
·dS⃗ =

Ï

ΓD

(︂
0 ·ϵ∇⃗Φ

)︂
·dS⃗

⏞ ⏟⏟ ⏞
I1

−
Ï

ΓR

γΦ2dS =−
Ï

ΓR

γΦ2dS. (4.1.11)

Consequently, the equation (4.1.10) can be rewritten as the following:

〈Φ,T (Φ)〉=
Ñ

Ω
ϵ
⃓⃓
∇⃗Φ

⃓⃓2dV +
Ï

ΓR

γΦ2dS > 0 (4.1.12)

implying that (4.1.9) holds for all elements in V0. Thus, the linear transforma-
tion (4.1.5) is positive definite. Note also, that permittivity ϵ is positive at all
points of Ω and γ is positive on the boundary ΓR , i.e., condition (4.2.2). The
same conclusion holds in the case of the Neumann boundary condition, i.e.,
γ= 0.

In the third step of the procedure described on page 132 we derive the
functional by constructing a quadratic form as

F (Φ) = 〈Φ,T (Φ)〉−2〈ρ f ,Φ〉. (4.1.13)

Next, by observing equations (4.1.3) and (4.1.5) we rewrite the functional
(4.1.13) in integral form as

F (Φ) =−
Ñ

Ω
Φ∇⃗ ·

(︂
ϵ∇⃗Φ

)︂
dV −2

Ñ

Ω
Φρ f dV.
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region of integration, ΓI :

− I5 − I6 − I7 =

=−
Ó

ΓI

(︃(︂ 1

µ1
∇⃗× A⃗1

)︂
×δA⃗1

)︃
· n̂1dS −

Ó

ΓI

(︃(︂ 1

µ2
∇⃗× A⃗2

)︂
×δA⃗2

)︃
· n̂2dS−

−
Ï

ΓI

K⃗ f ·δA⃗dS =

=−
Ó

ΓI

(︃
n̂1 ×

(︂ 1

µ1
∇⃗× A⃗1

)︂)︃
·δA⃗1dS −

Ó

ΓI

(︃
n̂2 ×

(︂ 1

µ2
∇⃗× A⃗2

)︂)︃
·δA⃗2dS−

−
Ï

ΓI

K⃗ f ·δA⃗dS =

=
Ó

ΓI

(︃
− n̂ ×

(︂ 1

µ1
∇⃗× A⃗1

)︂
+ n̂ ×

(︂ 1

µ2
∇⃗× A⃗2

)︂
− K⃗ f

)︃

⏞ ⏟⏟ ⏞
=0

·δA⃗dS = 0.

Here again we have used the fact that n̂ = n̂1 = −n̂2 in Figure 4.2.1 A) and
identity (1.1.7). As soon as the variation δA⃗ can take an arbitrary shape on the
interface ΓI we can invoke the fundamental lemma of calculus of variations
and deduce that

1

µ2
n̂ ×

(︂
∇⃗× A⃗2

)︂
− 1

µ1
n̂ ×

(︂
∇⃗× A⃗1

)︂
= K⃗ f on ΓI

what is identical to (v) in (4.2.30).
The integral I4 in (4.2.40) must equal zero as well. By rearranging the terms

of the integral I4,

I4 =
Ó

ΓR

(︃
n̂ ·

(︂ 1

µ2
∇⃗× A⃗2

)︂
×δA⃗2 −γ

(︂
n̂ × A⃗2

)︂
·
(︂
n̂ ×δA⃗2

)︂
−Q⃗ ·δA⃗2

)︃
dS =

=
Ó

ΓR

(︃
n̂ ×

(︂ 1

µ2
∇⃗× A⃗2

)︂
+γn̂ ×

(︂
n̂ × A⃗2

)︂
−Q⃗

)︃

⏞ ⏟⏟ ⏞
=0

·δA⃗2dS = 0,

and invoking the fundamental lemma of calculus of variations we deduce
that

1

µ
n̂ ×

(︂
∇⃗× A⃗

)︂
+γn̂ ×

(︂
n̂ × A⃗

)︂
= Q⃗ on ΓR (4.2.41)

as δA⃗2 can take any shape on boundary ΓR . Equation (4.2.41) is identical to
the Robin boundary condition (iii) in (4.2.30).

Therefore, we can conclude that the functional (4.2.36) encodes: the par-
tial differential equation (i) in (4.2.30), the Robin boundary condition (iii) in
(4.2.30), and the interface condition (v) in (4.2.30). These are natural bound-
ary and interface conditions. The Dirichlet boundary condition (ii), and the
interface condition (iv) in (4.2.30) are essential. They must be imposed else-
where. In practice, the Dirichlet boundary condition is imposed by con-
straining the degrees of freedom, and the interface condition (iv) is imposed
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Box 4.2.3: Static vector boundary value problem - functional in 3D

The solution to the static vector boundary value problem for the mag-
netostatic vector potential

∇⃗×
(︂ 1

µ
∇⃗× A⃗

)︂
+η2 A⃗ = J⃗ f in Ω (i),

(e) n̂ × A⃗ = n̂ ×G⃗ on ΓDn (ii),

(n)
1

µ
n̂ ×

(︂
∇⃗× A⃗

)︂
+γn̂ ×

(︂
n̂ × A⃗

)︂
= Q⃗ on ΓRm (iii),

(e) n̂ × A⃗+ = n̂ × A⃗− on ΓI k (iv),

(n)
1

µ+
n̂ ×

(︂
∇⃗× A⃗+

)︂
− 1

µ−
n̂ ×

(︂
∇⃗× A⃗−

)︂
= K⃗ f on ΓI k (v),

(4.2.42)
where

γ> 0 on ΓRm for Robin boundary conditions
and
γ= 0 on ΓRm for Neumann boundary conditions,

minimizes the following functional:

F (A⃗) =
Ñ

Ω

1

µ

⃓⃓
⃓∇⃗× A⃗

⃓⃓
⃓
2

dV +
∑︂
m

Ï

ΓRm

(︂
γ
⃓⃓
⃓n̂ × A⃗

⃓⃓
⃓
2
+2Q⃗ · A⃗

)︂
dS+

+η2
Ñ

Ω
| A⃗ |2 dV −2

Ñ

Ω
J⃗ f · A⃗dV

⏞ ⏟⏟ ⏞
I J

−2
∑︂
k

Ï

ΓI k

K⃗ f · A⃗dS.

(4.2.43)
The boundary value problem (4.2.42) is, essentially, the boundary
value problem (3.3.31) with the gauging term η2 A⃗ added to the partial
differential equation. The last five bullet points below the boundary
value problem (3.3.31) can be directly applied to the boundary value
problem (4.2.42).

by the choice of the finite elements. The curl-conforming elements such as
FE_Nedelec<dim> of deal.II guarantee the continuity of the tangential com-
ponent of the vector field on their edges and faces.

Finally, we generalize the functional (4.2.36) by allowing the problem do-
main to have an arbitrary amount of boundaries and interfaces between dis-
similar materials. The generalized functional is described in the Box 4.2.3.

Next, let us derive the functional that can be used to solve the two- dimen-
sional planar problems formulated in terms of the magnetic vector potential,
A⃗, see section 3.4.3. Strictly speaking, the cross product and the curl exist
only in the three- dimensional space. Therefore, the boundary value problem
(4.2.42) and the functional (4.2.43) describe only three- dimensional prob-
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lems. In section 1.1 we have introduced two- dimensional cross products
and curls in order to facilitate the analysis of two- dimensional problems.
It is possible to repeat all derivations on pages 238 - 257 using these defi-
nitions and deduce the functional that corresponds to the boundary value
problem (3.4.61). These derivations, however, would be almost identical to
their three-dimensional counterparts on pages 238 - 257. For this reason, we
will skip these derivations altogether and invoke the informal procedure de-
scribed on page 211. This procedure must be extended with the following
rule. The volume integrals must be replaced with surface integrals over the
two- dimensional domain,

Ñ

Ω
dV →

Ï

Ω
dS,

and the surface integrals over the boundaries and interfaces must be replaced
with line integrals, Ï

Γ
dS →

∫︂

Γ
dl .

This rule is motivated by the fact that in two-dimensional derivations the
Green’s identities (1.1.62) and (1.1.63) must be used instead of (1.1.60) and
(1.1.61). The functional derived by application of such procedure is presented
in the Box 4.2.4. Recall that the boundary value problem (4.2.44) describes
planar two-dimensional vector problems. Consequently, the functional (4.2.45)
describes planar two-dimensional vector problems as well. The axisymmet-
ric two-dimensional vector problems do not exist, see section 3.4.4.

4.3 PROJECTIONS

Each physical quantity studied in electromagnetics must be modeled by a
specific type of finite elements. There are four relevant types of finite ele-
ments. We will discuss them in more detail in chapter 5. The projection
transformation helps to switch between the finite elements. Consider the fol-
lowing example. Suppose we have run a simulation and got an electric scalar
potential Φ as a result. The potential is modeled by the Lagrange finite ele-
ments as this type of elements is appropriate for an electric scalar potential.
Next, we would like to convert the calculated scalar potential into the electric
field, E⃗ . The two physical quantities,Φ and E⃗ , are related as

E⃗ =−∇⃗Φ. (4.3.1)

The proper finite elements for modeling E⃗ are the Nedelec finite elements.
So, we need to implement the last equation such, that the quantity on the
right-hand side,Φ, is modeled by the Lagrange finite elements and the quan-
tity on the left-hand side, E⃗ , is modeled by the Nedelec finite elements, see
section 5.4. We can do this with a help of the projection transformation.
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CHAPTER 5

FINITE ELEMENT METHOD

5.1 OVERVIEW OF THE METHOD

A finite element is a collection of three items [13]: (i) a cell, (ii) a set of shape
functions defined on the cell, and (iii) a set of degrees of freedom associated
with the shape functions. Let us consider the meaning of these three items
and review the terminology associated with them.

In the framework of the finite element method a problem domain is rep-
resented by a tessellation. We will call this tessellation a mesh. In the deal.II
terminology it is known as triangulation. The deal.II library supports quadri-
lateral and hexahedral mesh cells. Figure 5.1.1 gives an example of how such
cells may look like. The vertices of the cells are often referred to as mesh
nodes. The line segments that interconnect them are called edges. In deal.II
terminology the edges of a quadrilateral cell and facets of a hexahedral cell
are called faces. The deal.II library also supports one-dimensional cells which
are, essentially, line segments.

Suppose we have successfully programmed, compiled, and run a finite el-
ement program which calculates an electric potential in a problem domain.
The output of this hypothetical program will be an ordered collection of real
numbers in double format. These numbers are called degrees of freedom.
The degrees of freedom, c j , allow calculating the scalar potential at any point
within the problem domain as

Φ(r⃗ ) =
∑︂

j
c j N j (r⃗ ). (5.1.1)

The functions N j (r⃗ ) in the last equation are called shape functions. They
are also known as basis functions or interpolation functions. In other words,
within the framework of the finite element method, a solution to a boundary
value problem is represented as a sum of scaled shape functions. The de-
grees of freedom are the scaling coefficients. The shape functions in (5.1.1)
are essentially scalar fields that exist locally within a few mesh cells. There
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A) B)

Figure 5.1.1: A) An example of a quadrilateral cell. B) A example of a hexahe-
dral cell.

is another type of shape functions. They are vector fields that exist locally
within a few cells. They are used in vector-valued problems. The magnetic
vector potential, for example, can be expressed as

A⃗ =
∑︂

j
c j N⃗ j (r⃗ ), (5.1.2)

where N⃗ j (r⃗ ) are vector-valued shape functions. The finite elements that com-
prise scalar shape functions are called scalar finite elements. Accordingly,
the finite elements that comprise vector shape functions are called vector
finite elements.

As discussed above, a degree of freedom is just a real number. As any real
number, a degree of freedom can be regarded as a functional, C j , that takes a
function as an input and produces a real number as an output. The function
in the argument of the functional is a scalar field,

c j =C j
(︁
Φ(r⃗ )

)︁
, (5.1.3)

in the case of the scalar finite element. In the case of the vector finite ele-
ments the argument of the functional is a vector field,

c j =C j
(︁

A⃗(r⃗ )
)︁
. (5.1.4)

Suppose we wish to approximate a scalar field with shape functions on a
particular mesh. To do so, we need to calculate the degrees of freedom, c j ,
and then invoke equation (5.1.1). The functional C j in (5.1.3) can help us to
calculate the degrees of freedom. This functional gives instructions on how
to convert the scalar field into j -th degree of freedom. These instructions are
specific to a particular type of the finite elements. For some finite elements
the functional C j instructs to sample the scalar field at a specific point. For
other finite elements it instructs to calculate a particular integral. The in-
terested reader can refer to Chapter 3 in [28] which gives a very accessible
overview of common and unusual finite elements and the corresponding de-
grees of freedom. Equations (5.1.3) and (5.1.4) can be regarded as definitions
of the degrees of freedom.
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In general, different types of shape functions share common features. Firstly,
the support of a shape function is compact. That is, a shape function equals
zero outside a small region of the problem domain. There is nothing wrong
with functions that have a global support, i.e., exist at all points of the prob-
lem domain. It is just the shape functions with compact support do a bet-
ter job in approximating functions locally. Think, for example, of approxi-
mating a function that at a distance looks more like a delta function . It is
more convenient to approximate it with shape functions that exist on very
small patches, i.e., have compact supports, than with functions that exist at
all points of the domain such as harmonics of the Fourier series.

Secondly, shape functions are orthonormal. The notion of orthonormality
can be expressed as

c j =C j (Ni ) =
{︄

1, if i = j

0, if i ̸= j
(5.1.5)

for scalar shape functions and as

c j =C j (N⃗ i ) =
{︄

1, if i = j

0, if i ̸= j
(5.1.6)

for vector shape functions. This is simply a matter of convenience. If the
shape functions are orthonormal the changes made by adjusting the degrees
of freedom in (5.1.1) or in (5.1.2) are independent of each other. That is, an
adjustment of one degree of freedom does not create a necessity to readjust
other degrees of freedom. It is easier to find the right combination of the
degrees of freedom if the adjustments they make are independent of each
other.

Thirdly, the shape functions share some properties with the physical quan-
tities they model so they can take care of some essential interface conditions.
For example, in the end of section 4.1.4 and in section 4.1.5 we have discussed
that the interface condition (iv) in (2.1.20) is an essential condition. It needs
to be imposed by a proper choice of finite elements. The shape functions
of the Lagrange finite elements discussed in section 5.2.1 are constructed in
such a way that scalar fields approximated by them will be continuous no
matter what. That is, the shape functions of Lagrange finite elements guaran-
tee the continuity of the solution. Therefore, the choice of the Lagrange finite
elements enforces interface condition (iv) in (2.1.20). Similarly, the choice
of the Nedelec finite elements, section 5.3.2, enforces the essential interface
condition (iv) in (3.3.31).

The finite element method closely resembles approximation. The most
significant difference between the finite element method and approximation
is that approximation approximates known functions, while the finite ele-
ment method approximates unknown functions that are solutions to bound-
ary value problems. Just as it is the case with approximation, the finite ele-
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Box 5.5.2: Current vector potential in 2D

The compatibility condition for the curl-curl equation suggests that
the free-current density must be derived as a curl of a current vector
potential:

J⃗ f = ∇⃗ V×T.

Then the partial differential equation (i) in (4.2.44) must be replaced
with the following equation:

∇⃗ V×
(︂ 1

µ
∇⃗ S× A⃗

)︂
+η2 A⃗ = ∇⃗ V×T.

Accordingly, the integral

I J =
Ï

Ω
J⃗ f · A⃗dS

in the functional (4.2.45) must be replaced with the following two in-
tegrals:

I J =
Ï

Ω
T

(︂
∇⃗ S× A⃗

)︂
dS −

∮︂

Γ
T

(︂
n̂

S× A⃗
)︂
dl . (5.5.11)

The current vector potential itself can be calculated by solving the fol-
lowing boundary value problem

−∇⃗ ·
(︃
∇⃗T

)︃
= ∇⃗ S× J⃗ f in Ω (i),

T =G on ΓDn (ii),

n̂ ·
(︂
∇⃗T

)︂
=Q on ΓRm (iii).

(5.5.12)

This boundary value problem is a modified version of (2.1.20). Note,
that in most of the cases only one boundary condition needs to be
implemented, either the Dirichlet boundary condition (ii) or the Neu-
mann boundary condition (iii).

5.6 NUMERICAL RECIPES

In this section we will convert the functionals that has been derived in the
preceding sections into numerical recipes that can be programmed into a
computer. To be precise, we need to replace the integrals in all functionals
with quadratures. We, however, will not do so and leave the integrals as they
are. I think it is easier to read a recipe in this form. If integrals are replaced
with quadrature sums, one needs to track which sum sums over a quadra-
ture and which sum sums over interfaces and boundaries. Furthermore, the
information on the types of the integrals (volume, surface, or line) will be



5.6. NUMERICAL RECIPES 326

lost if the integrals are replaced by quadrature sums in the recipes. This in-
formation helps to place the integrals in the right loop in the code. Instead
of replacing the integrals with quadratures in all recipes we will just keep in
mind that an integral, volume, surface, or line, no matter, must be replaced
with the following quadrature sum:

I ≈
∑︂

i
L(q⃗ i )

⃓⃓
det(J B )

⃓⃓
si ,

where L(q⃗ i ) is the integrand evaluated at a quadrature point q⃗ i ,
⃓⃓
det(J B )

⃓⃓
is

the Jacobian evaluated at q⃗ i , and si is the weight coefficient. The product⃓⃓
det(J B )

⃓⃓
si is what you get when you ask deal.II to "update_JxW_values".

All integrals in the numerical recipes have tags such as Ia1. Each compo-
nent of the system matrix (5.6.7), for example, consists of two integrals, Ia1

and Ia2. These tags are used in the help of the computer code as references.
Note that the template mechanism of deal.II makes the computer code in-
variant to the dimensionality of the integrals. That is, the same peace of code
implements the integral Ia1 in (5.6.7) and Ia1 in (5.6.14). For this reason, these
two different integrals (one is volume integral, another is a surface integral)
have the same label, Ia1.

In the discussion below we assume that the mesh is matched with inter-
faces between dissimilar materials. That is, all interfaces are approximated
by the faces of the mesh cells such that no interface cuts through a mesh cell.

5.6.1 STATIC SCALAR SOLVER (DIV-GRAD)

STATIC SCALAR SOLVER IN THREE DIMENSIONS

The functional for the static scalar boundary value problem is given by (4.1.45).
It is reprinted here for convenience:

F (Φ) =
Ñ

Ω
ϵ | ∇⃗Φ |2 dV +

∑︂
m

Ï

ΓRm

(︂
γΦ2 −2σΦ

)︂
dS−

−2
∑︂
k

Ï

ΓI k

κ f ΦdS −2
Ñ

Ω
ρ f ΦdV.

(5.6.1)

We convert this functional into a multivariate function by substituting (5.1.1)
into it,

F (c) =

=
Ñ

Ω
ϵ

(︃
∇⃗

∑︂
j

c j N j

)︃
·
(︃
∇⃗

∑︂
j

c j N j

)︃
dV +

∑︂
m

Ï

ΓRm

γ

(︃∑︂
j

c j N j

)︃
·
(︃∑︂

j
c j N j

)︃
dS−

−2
∑︂
m

Ï

ΓRm

σ

(︃∑︂
j

c j N j

)︃
dS −2

∑︂
k

Ï

ΓI k

κ f

(︃∑︂
j

c j N j

)︃
dS −2

Ñ

Ω
ρ f

(︃∑︂
j

c j N j

)︃
dV.
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In order to find the stationary point of this function, we differentiate it with
respect to ci and equate the result to zero:

∂F (c)

∂ci
=

Ñ

Ω
ϵ∇⃗Ni ·

(︃∑︂
j

c j ∇⃗N j

)︃
dV +

Ñ

Ω
ϵ

(︃∑︂
j

c j ∇⃗N j

)︃
· ∇⃗Ni dV +

+
∑︂
m

Ï

ΓRm

γNi

(︃∑︂
j

c j N j

)︃
dS +

∑︂
m

Ï

ΓRm

γ

(︃∑︂
j

c j N j

)︃
Ni dS−

−2
∑︂
m

Ï

ΓRm

σNi dS −2
∑︂
k

Ï

ΓI k

κ f Ni dS −2
Ñ

Ω
ρ f Ni dV = 0.

Next, let us divide the last equation by two and rearrange the terms as the
following:

∑︂
j

c j

(︃Ñ

Ω
ϵ
(︂
∇⃗Ni

)︂
·
(︂
∇⃗N j

)︂
dV +

∑︂
m

Ï

ΓRm

γNi N j dS

)︃
=

=
∑︂
m

Ï

ΓRm

σNi dS +
∑︂
k

Ï

ΓI k

κ f Ni dS +
Ñ

Ω
ρ f Ni dV.

(5.6.2)

Equation (5.6.2) is the i-th equation of the final system of linear equations. By
introducing the following notations:

Ai j =
Ñ

Ω
ϵ
(︂
∇⃗Ni

)︂
·
(︂
∇⃗N j

)︂
dV +

∑︂
m

Ï

ΓRm

γNi N j dS, (5.6.3)

and

bi =
∑︂
m

Ï

ΓRm

σNi dS +
∑︂
k

Ï

ΓI k

κ f Ni dS +
Ñ

Ω
ρ f Ni dV , (5.6.4)

the system of linear equations implied by (5.6.2) can be written as

Ac = b. (5.6.5)

This system can be solved for c , a column vector filled with degrees of free-
dom. Then the potential at any point within the problem domain Ω can be
calculated by invoking (5.1.1). Finally, we summarize the recipe for the static
scalar solver in the Box 5.6.1.

STATIC SCALAR SOLVER IN TWO DIMENSIONS (PLANAR)

In this section we will adapt the recipe discussed in the preceding section
to two-dimensional planar problems. We assume that the initial three- di-
mensional problem from which the two-dimensional planar problem is de-
rived is described in a Cartesian coordinate system. We also assume that
the problem exhibits a translation symmetry along the z axis. That is, any
cross section made by a plane perpendicular to the z axis presents the same
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Box 5.6.1: Recipe for static scalar solver in 3D

A three-dimensional static scalar boundary value problem given by
equation (4.1.44) is solved by minimizing the following functional,
i.e., equation (4.1.45):

F (Φ) =
Ñ

Ω
ϵ | ∇⃗Φ |2 dV +

∑︂
m

Ï

ΓRm

(︂
γΦ2 −2σΦ

)︂
dS−

−2
∑︂
k

Ï

ΓI k

κ f ΦdS −2
Ñ

Ω
ρ f ΦdV.

(5.6.6)

The minimum of a discrete version of this functional is calculated by
solving the following system of linear equations:

Ac = b.

The components of the system matrix and that of the right-hand side
are calculated as

Ai j =
Ñ

Ω
ϵ
(︂
∇⃗Ni

)︂
·
(︂
∇⃗N j

)︂
dV

⏞ ⏟⏟ ⏞
Ia1

+
∑︂
m

Ï

ΓRm

γNi N j dS

⏞ ⏟⏟ ⏞
Ia2

(5.6.7)

and

bi =
∑︂
m

Ï

ΓRm

σNi dS

⏞ ⏟⏟ ⏞
Ib1

+
∑︂
k

Ï

ΓI k

κ f Ni dS

⏞ ⏟⏟ ⏞
Ib2

+
Ñ

Ω
ρ f Ni dV

⏞ ⏟⏟ ⏞
Ib3

.

two-dimensional picture. We choose one of the cross sections to be the two-
dimensional planar domain. Next, we expand the volume element of the ini-
tial three-dimensional problem domain as

dV = d zdS, (5.6.8)

where dS is the surface element of the two-dimensional planar domain. Sim-
ilarly, we expand the surface element of the initial three-dimensional prob-
lem domain as

dS = d zdl , (5.6.9)

where dl denotes the arc length element of the cross section of a three- di-
mensional surface that represents a boundary or an interface between dis-
similar materials. As we have assumed a translation symmetry in the initial
three- dimensional problem domain, all integrands in the functional (5.6.6)
are independent of the z coordinate. Consequently, we can calculate all the
integrals over the z coordinate in advance by analytical methods. Taking into
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CHAPTER 6

LIBRARY OF CLOSED-FORM

ANALYTICAL SOLUTIONS

Software verification is an integral part of scientific computing. Ones the
recipes for solvers and projectors discussed in the preceding chapter are im-
plemented in a computer code, it is only natural to ask whether the code does
what it is supposed to do. The method of exact solutions can help to answer
this question. According to this method, one needs to choose a textbook
problem with a known closed-form analytical solution, solve this problem
numerically with a help of the computer code, and compare the numerical
result to the solution from the textbook. The numerical solution must be
close to the textbook solution. Moreover, the error of approximation of the
textbook solution by the numerical solution should decrease with a decreas-
ing size of mesh cells.

In practice, however, it is quite difficult to find one textbook problem that
can cover all components of a boundary value problem and all possible con-
figurations of the problem domain. For this reason, one needs a set of text-
book problems. Each problem should cover a few components of the bound-
ary value problem and a few possible features of the problem domain. This
chapter contains such a set of textbook problems.

6.1 PROBLEMS IN ELECTROSTATICS

6.1.1 TWO COAXIAL CYLINDRICAL TUBES

In this section we will consider two infinitely long conducting coaxial cylin-
drical tubes depicted in Figure 6.1.1. The first (inner) tube is represented by
its outer surface ΓD1. The second (outer) tube is represented by its inner sur-
faceΓD2. The space between the tubes is empty. The first tube is at a potential
ofΦ=Φ0 Volts. The second tube is at a potential ofΦ= 0 Volts, so the electro-
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write:

K⃗ f =−r̂ × M⃗ =−χmr̂ × H⃗ =−χm

µ
r̂ × B⃗ =−χm

µ

(︂1

2
µa J f

)︂
r̂ × φ̂=−χm a

2
J f ẑ.

(6.2.5)
The volume bound-current density is given by equation (1.3.15). Then by
observing equations (1.3.19), (1.3.15), and (ii) in (1.3.22) we write:

J⃗ b = ∇⃗× M⃗ =χm∇⃗× H⃗ =χm J⃗ f =χm J f ẑ. (6.2.6)

By substituting equations (6.2.5) and (6.2.6) into (6.2.4) we deduce that

Ib = 2πa

(︃(︂
− χm a

2
J f ẑ

)︃
· ẑ

)︂
+πa2

(︃(︂
χm J f ẑ

)︂
· ẑ

)︃
=−πa2χm J f +πa2χm J f = 0.

Therefore, the net total bound current encompassed by the Amperian loop
nr. 2 in Figure 6.2.1 equals zero. Consequently, the magnetic field outside the
wire is indeed independent of the magnetization of the wire as in this par-
ticular configuration the magnetic field induced by volume bound currents
cancels out the magnetic field induced by the surface bound currents.

6.2.2 SPHERICAL SHIELD IN A UNIFORM MAGNETIC FIELD

In this section we will consider a magnetic shield shaped as a spherical shell.
The shield is shown in Figure 6.2.2. It is made of soft permeable material of
permeability µ. The permeability of the space inside and outside the shield
is µ0. The shield is exposed to a uniform magnetic field aligned with the z-
axis. That is, the magnetic field is described by the following equation:

B⃗ = B0k̂ (6.2.7)

in absence of the shield. We would like to obtain closed-form expressions
for the total magnetic scalar potential Ψ, auxiliary vector field H⃗ , and the
magnetic field B⃗ .

The sources of the magnetic field fall outside the problem domain. There-
fore, we can apply the total magnetic scalar potential described in section 3.1.
We adapt the boundary-value problem (3.1.14) as the following:

∇2Ψ= 0 in Ω (i),
Ψ3 =−H0z on ΓD1 (ii),
Ψ1 =Ψ2 on ΓI 1 (iii),

µ0n̂ · ∇⃗Ψ1 =µn̂ · ∇⃗Ψ2 on ΓI 1 (iv),
Ψ2 =Ψ3 on ΓI 2 (v),

µn̂ · ∇⃗Ψ2 =µ0n̂ · ∇⃗Ψ3 on ΓI 2 (vi).

(6.2.8)

This adaptation deserves a few words. The magnetic permeability in all three
subdomains, i.e., inΩ1,Ω2, andΩ3, is assumed to be homogeneous. As soon
as we will treat the three subdomains separately, the magnetic permeability
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Figure 6.2.2: A magnetic shield shaped as a spherical shell. The shield is
shown in grey color. The outermost sphere in the figure represents infinity.
The shield is exposed to a uniform magnetic field B⃗ that points in z− direc-
tion.

can be considered to be a real-valued constant in each subdomain. Conse-
quently, we can replace equation (i) in (3.1.14) with the Laplace equation (i)
in (6.2.8). Equations (iii)-(vi) in (6.2.8) are interface conditions on the inter-
faces ΓI 1 and ΓI 2. The Dirichlet condition (ii) in (6.2.8) can be deduced as the
following. The magnetic field induced by the magnetization of the magnetic
material of the shield vanishes at infinity. Consequently, the total magnetic
field at infinity equals the applied magnetic field, i.e., the uniform magnetic
field, B⃗ = B0k̂. Therefore, taking into account (3.1.1) and (1.3.21) we can de-
duce the total scalar magnetic potential at infinity:

Ψ3 =− 1

µ0
B0z =−H0z.

The problem domain is spherically symmetric. Therefore, we will look for
a solution expressed in the spherical coordinate system. The spherical coor-
dinate system shown in Figure A.0.1. The spherical symmetry of the problem
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suggests that the total magnetic scalar potential is independent of φ coordi-
nate. Consequently, the φ-components of the relevant vector fields, i.e., B⃗
and H⃗ equal zero. The method of separation of variables yields the following
general solution to the Laplace’s equation in terms of spherical coordinates,
see, for instance, page 143 in [22]:

Ψ(r,θ) =
∞∑︂

n=0

(︃
Anr n +Bn

1

r n+1

)︃
P (n)(︁cos(θ)

)︁
, (6.2.9)

where P (n)(x) are Legendre polynomials.
Let us adapt the general solution above separately for the three subdo-

mains. We begin with the outermost subdomain, Ω3. We can express the
total magnetic potential at infinity by taking a limit r →∞ of the last equa-
tion:

Ψ3 =
∞∑︂

n=0
Anr nP (n)(︁cos(θ)

)︁
on ΓD1 . (6.2.10)

In order to satisfy the Dirichlet condition (ii) in (6.2.8), we need to assume
that

An =
{︄
−H0 if n = 1

0 if n ̸= 1.
(6.2.11)

Then observing that P (1)
(︁

cos(θ)
)︁ = cos(θ) and z = r cos(θ) we can rewrite

(6.2.10) as
Ψ3 =−H0r cos(θ) =−H0z on ΓD1 .

Therefore, (6.2.11) ensures that the Dirichlet boundary condition (ii) in (6.2.8)
is satisfied. Then equation (6.2.9) in the subdomainΩ3 becomes

Ψ3 =−H0r cos(θ)+
∞∑︂

n=0
Bn

1

r n+1 P (n)(︁cos(θ)
)︁

in Ω3. (6.2.12)

In order to avoid a confusion, we shall rename the coefficients Bn in the sub-
domainΩ3 to αn . Then the last equation can be rewritten as

Ψ3 =−H0r cos(θ)+
∞∑︂

n=0
αn

1

r n+1 P (n)(︁cos(θ)
)︁

in Ω3. (6.2.13)

Next, let us consider the second subdomain, Ω2. In this subdomain we
rename the coefficients An and Bn to βn and γn . Then equation (6.2.9) can
be rewritten as

Ψ2 =
∞∑︂

n=0

(︃
βnr n +γn

1

r n+1

)︃
P (n)(︁cos(θ)

)︁
in Ω2. (6.2.14)

Next, let us turn our attention to the innermost subdomain, Ω1. In order
to avoid a singularity at the origin we have to set all coefficients Bn in (6.2.9)
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to zero. We rename the coefficients An in the subdomain Ω1 to δn . Then
equation (6.2.9) can be rewritten as

Ψ1 =
∞∑︂

n=0
δnr nP (n)(︁cos(θ)

)︁
in Ω1. (6.2.15)

The interface condition (v) in (6.2.8) implies that equations (6.2.13) and
(6.2.14) must be equal on the interface ΓI2 ,

Ψ2

⃓⃓
⃓
r=b

=Ψ3

⃓⃓
⃓
r=b

. (6.2.16)

On the other hand, interface condition (vi) in (6.2.8) implies that the deriva-
tives of (6.2.13) and (6.2.14) in the radial direction on the interface ΓI2 must
be scaled versions of each other,

µr
∂Ψ2

∂r

⃓⃓
⃓⃓
r=b

= ∂Ψ3

∂r

⃓⃓
⃓⃓
r=b

, (6.2.17)

where
µr =

µ

µ0
.

Similarly, the interface condition (iii) in (6.2.8) implies that equations (6.2.14)
and (6.2.15) must be equal on the interface ΓI1 ,

Ψ1

⃓⃓
⃓
r=a

=Ψ2

⃓⃓
⃓
r=a

. (6.2.18)

On the other hand, interface condition (iv) in (6.2.8) implies that the deriva-
tives of (6.2.14) and (6.2.15) in the radial direction on the interface ΓI1 must
be scaled versions of each other,

∂Ψ1

∂r

⃓⃓
⃓⃓
r=a

=µr
∂Ψ2

∂r

⃓⃓
⃓⃓
r=a

. (6.2.19)

The interface conditions (6.2.16), (6.2.17), (6.2.18), and (6.2.19) can be sat-
isfied by setting the coefficients αn , βn , γn , δn to zero for all n ̸= 1 and then
calculating proper values for α1, β1, γ1, and δ1. By setting all coefficients to
zero for n ̸= 1 we can rewrite equations (6.2.13) (6.2.14) and (6.2.15) as

Ψ3 =
(︃
−H0r +α1

1

r 2

)︃
cos(θ) in Ω3, (6.2.20)

Ψ2 =
(︃
β1r +γ1

1

r 2

)︃
cos(θ) in Ω2, (6.2.21)

and
Ψ1 = δ1r cos(θ) in Ω1. (6.2.22)
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Next, let us calculate the four coefficients, α1, β1, γ1, and δ1. A straight-
forward application of interface condition (6.2.16) to equations (6.2.20) and
(6.2.21) yields the following linear equation:

β1b +γ1b−2 =−H0b +α1b−2.

After rearranging the terms the last equation becomes

α1 −b3β1 −γ1 = b3H0. (6.2.23)

Similarly, a straightforward application of interface condition (6.2.17) to equa-
tions (6.2.20) and (6.2.21) yields the following linear equation:

µrβ1 −2µrγ1b−3 =−H0 −2α1b−3.

After rearranging the terms the last equation becomes

2α1 +µr b3β1 −2µrγ1 =−b3H0. (6.2.24)

A straightforward application of interface condition (6.2.18) to equations
(6.2.21) and (6.2.22) yields the following linear equation:

β1a +γ1a−2 = δ1a.

After rearranging the terms the last equation becomes

a3β1 +γ1 −a3δ1 = 0. (6.2.25)

Similarly, application of interface condition (6.2.19) to equations (6.2.21) and
(6.2.22) yields the following linear equation:

µrβ1 −2µrγ1a−3 = δ1.

After rearranging the terms the last equation becomes

µr a3β1 −2µrγ1 −a3δ1 = 0. (6.2.26)

The four linear equations (6.2.23), (6.2.24), (6.2.25), and (6.2.26) can be
written in a matrix form as

⎡
⎢⎢⎣

2 µr b3 −2µr 0
1 −b3 −1 0
0 a3 1 −a3

0 µr a3 −2µr −a3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

α1

β1

γ1

δ1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−b3H0

b3H0

0
0

⎤
⎥⎥⎦ . (6.2.27)

Next, we solve this system of linear equations by Gaussian elimination. The
steps of the Gaussian elimination are shown in Figure 6.2.3. The results of the
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rhs

1 2 0

2 1 -1 0

3 0 1 0

4 0 0

1 2 0

2 1 -1 0

3 0 0 0

4 0 0
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1 2 0
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Figure 6.2.3: Solution to the system of linear equations (6.2.27) by Gaussian
elimination.
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elimination process are:

Ω= (µr −1)

(µr +2)

a3

b3 ,

γ1 =
−3b3H0Ω

(2µr +1)−2(µr −1)Ω
,

β1 =
(2µr +1)γ1

(µr −1)a3 ,

α1 =
−b3H0 +2µrγ1 −µr b3β1

2
,

δ1 =
µr a3β1 −2µrγ1

a3 .

Finally, we can summarize equations (6.2.20), (6.2.21), and (6.2.22) as

Ψ=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ1r cos(θ) if r ≤ a
(︃
β1r + γ1

r 2

)︃
cos(θ) if a ≤ r ≤ b

(︃
−H0r + α1

r 2

)︃
cos(θ) if r ≥ b.

(6.2.28)

It is convenient to convert equation (6.2.28) in the Cartesian coordinate
system. From Figure A.0.1 we deduce that z = r cos(θ). Then (6.2.28) can be
rewritten in the Cartesian coordinate system as

Ψ=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ1z if r ≤ a

β1z +γ1
z

r 3 if a ≤ r ≤ b

−H0z +α1
z

r 3 if r ≥ b,

(6.2.29)

where

r =
√︂

x2 + y2 + z2.

The gradient of the total magnetic scalar potential in Cartesian coordinate
system can be obtained by a straightforward differentiation of (6.2.29):

∇⃗Ψ=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ1k̂ if r ≤ a

−3γ1
z

r 5

(︂
xî + y ĵ + zk̂

)︂
+

(︂
β1 +γ1

1

r 3

)︂
k̂ if a ≤ r ≤ b

−3α1
z

r 5

(︂
xî + y ĵ + zk̂

)︂
+

(︂
−H0 +α1

1

r 3

)︂
k̂ if r ≥ b.

(6.2.30)

The auxiliary vector field H⃗ and the magnetic field B⃗ can be calculated as

H⃗ =−∇⃗Ψ
and

B⃗ =−µ∇⃗Ψ.
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Figure 6.2.4: A cylindrical shield made of soft magnetic material in a free un-
bounded space. The cross section of the shield is shown in grey color. The
shield is exposed to a uniform magnetic field B⃗ that points in x direction.
The arc in the top part of the figure, ΓD1, represents infinity.

6.2.3 CYLINDRICAL SHIELD IN A UNIFORM MAGNETIC FIELD

In this section we will consider a magnetic shield shaped as an infinitely long
cylindrical tube coaxial with the z axis. The shield is shown in Figure 6.2.4. It
is made of soft permeable material of permeabilityµ. The permeability of the
space inside and outside the shield is µ0. The shield is exposed to a uniform
magnetic field aligned with the x axis. That is, the magnetic field is described
by the following equation in absence of the shield:

B⃗ = B0 î .

We would like to obtain closed-form expressions for: the total magnetic po-
tentialΨ, auxiliary vector field H⃗ , and magnetic field B⃗ .

This problem is similar to the problem described in the preceding section.
We adapt the boundary value problem (6.2.8) by changing only the Dirichlet
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Curl, 17, 46, 422, 426
two-dimensional scalar, 18
two-dimensional vector, 18

Curl-curl equation, 181, 204, 321, 325
on Bossavit’s diagram, 310, 315

Curl-free vector field, 20
Current density

bound, 63
free, 63

Current vector potential
in three dimensions, 321
in two dimensions, 325

De Rham complex
in three dimensions, 304, 305
in two dimensions, 312, 313

Defective matrix, 86
Degree of freedom, 262, 263, 265,

293, 298, 300
Dichotomy of boundary conditions,

234
Dimensional reduction, 8, 154, 193,

197, 202, 212
Dirichlet boundary condition, 142,

159, 184, 205, 219
Displacement

behavior on interfaces, 58
continuity on interfaces, 303
equations for, 58
notation, 58

Dissimilar bases, 87, 109, 114
Dissimilar bases transformation, 87
Div-grad equation, 141, 195

compatibility condition, 317
on Bossavit’s diagram, 310, 315

Divergence, 16, 17, 44, 51, 422, 426,
429

Divergence-free vector field, 20
Domain

2D axisymmetric, 154, 197, 212
2D planar, 154, 193, 202
splitting, 231, 253
unbounded, 158, 218

Dot product, 3
Duality in electromagnetics, 171, 176

Eccentricity, 95, 107
Edge, 262
Edge finite elements, 294
Eigenbasis, 84
Eigendecomposition, 85
Eigenspace, 83
Eigenvalue, 83, 88
Eigenvector, 83, 88
Electric field

behavior on interfaces, 58
continuity on interfaces, 303
equations for, 56
notation, 55
symmetry of, 156

Electric scalar potential, 141
Electric susceptibility, 58
Element

arc length, 39, 49, 422, 425, 429
area, 41, 49, 53, 55, 422, 426, 429
volume, 42, 422, 426

Equation
curl-curl, 181, 204
div-grad, 141, 195

Essential boundary condition, 127,
138, 234, 235, 256

Essential interface condition, 127,
234, 235, 256

Evaluation point, 262

Face, 262
Finite elements

choice of, 301
edge, 294
FE_DGQ, 292, 309
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FE_Nedelec, 294, 309
FE_Q, 265, 309
FE_Raviart-Thomas, 298, 309
Lagrange, 265, 292, 309
Nedelec, 294, 309
nodal, 265, 294
Raviart-Thomas, 298, 309
scalar, 263
vector, 263

First variation, 134
Floating conductor, 152
Forward coordinate transformation

rules, 31, 47, 52, 420, 424,
428

Free charge density, 57
Free current density

continuity on interfaces, 304
surface, 69
volume, 63

Function space
H(curl), 298, 309
H(div), 300, 309
H(grad), 273, 309
L2, 294, 309

Functional, 126
Φ, homogeneous boundary

value problem, 224, 245
Φ, inhomogeneous boundary

value problem, 227, 249
Φ, static scalar boundary value

problem, 237
A⃗, static vector boundary value

problem 2D, 259
A⃗, static vector boundary value

problem 3D, 257
projection, 261

Fundamental lemma, 135

Gauge
Coulomb, 182, 194, 198, 241, 243
implicit, 243

Gauging, 182, 241
Gauging parameter, η2, 242
Gauss-Seidel preconditioner, 113
Gaussian quadrature rules, 277

Geometric multiplicity, 86
Geometric representation

of linear transformation, 88
Gradient, 17, 18, 43, 49, 103, 422, 426,

429
Gram matrix, 79
Green’s identities, 29

Hard magnetic material, 169
Helmholtz decomposition, 20
Helmholtz theorem, 19, 158
Hessian matrix, 96
Hexahedral cell, 263
Homogeneous boundary value

problem, 224, 245

Identity transformation, 242
In-plane two-dimensional vector, 8
Indefinite matrix, 96
Inhomogeneous boundary value

problem, 227, 249
Inner product

algebraic representation of, 78
of abstract vectors, 128, 129, 131
of multidimensional vectors, 75
of vectors, 3

Integral
line of a vector field, 13
surface of a vector field, 15
volume of a vector field, 15

Interface
continuity on, 302
definition of, 56
incorporating into functional,

227, 249
splitting, 228, 250

Interface condition
A, magnetic vector potential 2D

(planar), 197
A′, magnetic vector potential 2D

(axisym.), 201
Φ, electric scalar potential, 148
Θ, reduced magnetic scalar

potential, 178
Ψ, total magnetic scalar

potential, 173
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A⃗, magnetic vector potential 2D,
207

A⃗, magnetic vector potential 3D,
187

H⃗ , hard magnetic materials, 173
H⃗ , soft magnetic materials, 178
electric field, 62
essential, 127, 234, 235, 256
floating conductor, 153
magnetic field, 69
natural, 127, 234, 235, 256

Interpolation function, 262
Isoparametric surface, 95, 107

Jacobi preconditioner, 113
Jacobian matrix, 34, 35, 48, 49, 291

Lagrange finite elements, 265, 292,
309

Lagrange polynomial, 271
canonical form of, 270
one dimensional, 267
three dimensional, 269
two dimensional, 268

Left nullspace, 70
Legendre polynomial, 277
Line integral of a vector field, 13
Linear algebra, 69
Linear transformation, 74, 129, 131,

222, 239, 242, 259, 260
algebraic representation of, 77
geometric representation of, 88

Magnet, 169
Magnetic field

behavior on interfaces, 64
continuity on interfaces, 303
equations for, 56
notation, 55
symmetry of, 214

Magnetic material
hard, 169
soft, 64, 169

Magnetic susceptibility, 64
Magnetic vector potential, 180, 203

continuity on interfaces, 304

Magnetization, 62
Main theorem, 21

for curl, 26
for divergence, 26
for gradient, 26
of calculus, 21

Mapping, 271, 283, 287
versus coordinate

transformation, 287
Matrix, 70

changing bases of, 79
column space of, 70
defective, 86
Gram, 79
Hessian, 96
indefinite, 96
left nullspace of, 70
negative definite, 92, 96
negative semidefinite, 92, 96
nullspace of, 70
orthogonal, 88
positive definite, 90, 92, 96, 100
positive semidefinite, 92, 96
preconditioner, 112
row space of, 70
SPD, 100
symmetric, 71, 89, 100

Maxwell’s equations, 55
electric static, 56, 61
magnetic static, 56, 67

Mesh, 262
Method of truncation, 159, 219
Minimization problem, 92
Multidimensional vector, 75
Multiplicity

algebraic, 86
geometric, 86

Multiply-connected domain, 168

Nabla operator, 17
Natural boundary condition, 127,

138, 234, 235, 256
Natural interface condition, 127, 234,

235, 256
Nedelec finite elements, 294, 309
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Negative definite matrix, 92, 96
Negative semidefinite matrix, 92, 96
Neumann boundary condition, 143,

157, 159, 184, 205, 218, 219,
237

Newton-Cotes quadrature rules, 276
Nodal finite elements, 265, 294
Node, 262
Norm of a vector, 4
Normal component of vector, 6, 10
Nullspace, 70

Operator
Bayliss-Gunzburger-Turkel

(BGT), 163
kernel of, 305
nabla, 17
range of, 304

Orthogonal complement, 70
Orthogonal matrix, 88
Orthogonal transformation, 89
Orthonormality, 264
Out-of-plane two-dimensional

vector, 8
Outer product, 3

Permanent magnet, 169
Permeability, 64
Permittivity, 58
Planar domain, 154
Point

evaluation, 262
quadrature, 274
support, 265, 293

Polar decomposition, 91
Polar vector, 5, 156
Polarization, 57
Polynomial

characteristic, 85
Lagrange 1D, 267
Lagrange 2D, 268
Lagrange 3D, 269
Lagrange in canonical form, 270
Legendre, 277
monomials, 276

Positive definite matrix, 90, 92, 96,
100

Positive definite transformation, 91
Positive semidefinite matrix, 92, 96
Potential

A, magnetic vector 2D (planar),
194

A′, magnetic vector 2D
(axisym.), 198, 199

Φ, electric scalar, 141
Θ, reduced magnetic scalar, 175
Ψ, total magnetic scalar, 168
A⃗, magnetic vector 2D (planar),

203
A⃗, magnetic vector 3D, 180
scalar, 19, 56, 60, 141, 167, 168,

175, 180
vector, 19, 56, 60, 167, 180, 194,

198, 199, 203
Preconditioner, 112

Gauss-Seidel, 113
Jacobi, 113
SSOR, 113

Preconditioning, 109
Product

cross, 3
dot, 3
inner, 3, 75, 128, 129, 131
outer, 3

Projection, 258
Pseudovector, 5, 215

Quadratic form, 92, 132
Quadrature, 274

Gaussian rules, 277
Newton-Cotes rules, 276
trapezoidal rule, 276

Quadrature point, 274
Quadrilateral cell, 263

Rank, 71
Rank deficiency, 72
Raviart-Thomas finite elements, 298,

309
Recipe for
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projection from H(curl) to L2 nr.
14 (2D planar), 362

projection H(grad) to H(curl) nr.
1 and 2 (3D), 347

projection H(grad) to H(curl) nr.
3 and 4 (2D axisym.), 349

projection H(grad) to H(curl) nr.
3 and 4 (2D planar), 348

projection H(grad) to H(curl) nr.
5 (2D axisym.), 351

projection H(grad) to H(curl) nr.
5 (2D planar), 350

projection H(grad) to H(div) nr.
10 (2D axisym.), 357

projection H(grad) to H(div) nr.
10 and 11 (2D planar), 356

projection H(grad) to H(div) nr.
12 and 13 (2D planar), 360

projection H(grad) to H(div) nr.
6 and 7 (3D), 353

projection H(grad) to H(div) nr.
8 and 9 (2D axisym.), 355

projection H(grad) to H(div) nr.
8 and 9 (2D planar), 354

static scalar solver (2D
axisymmetric), 333

static scalar solver (2D current
vect. potential), 341

static scalar solver (2D planar),
330

static scalar solver (3D), 328
static vector solver (2D), 337
static vector solver (3D current

vect. potential), 339
static vector solver (3D), 336

Reduced magnetic scalar potential,
175

Reference cell, 271, 275, 283
Reflection symmetry, 5, 235
Residual, 104
Robin boundary condition, 145, 161,

184, 205, 220
Rotation symmetry, 154, 197, 212
Row space, 70
Rules

coordinate transformation
backward, 31, 47, 52, 291,
292, 420, 424, 428

coordinate transformation
forward, 31, 47, 52, 420,
424, 428

quadrature Gaussian, 277
quadrature Newton-Cotes, 276
quadrature trapezoidal, 276
variation, 136
vector, 4

Scalar
finite elements, 263

Scalar potential, 19, 56, 60, 141, 167,
168, 175, 180

continuity on interfaces, 302
Scale factor, 33, 48, 421, 425, 428
Search direction, 103, 111, 122
Shape function, 262, 263, 271, 293,

295–297, 299, 301
Similar bases, 87
Similarity bases transformation, 87
Singular value decomposition, 73
Soft magnetic material, 64, 169
Solenoidal vector field, 20
SSOR preconditioner, 113
Standard bases, 78
Static scalar boundary value

problem, 153, 174, 179, 197,
202, 237, 316, 325

functional, 237, 257, 259
Static vector boundary value

problem, 192, 212, 257, 259,
316, 321

Steepest descent algorithm, 103, 105,
111

Step, 103, 111
Support of a function, 264
Support point, 265, 293
Surface integral of a vector field, 15
Susceptibility

electric, 58
magnetic, 64

Symmetric matrix, 71, 89, 100
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Symmetric transformation, 89
Symmetry

reflection, 5, 155, 214, 235
rotation, 154, 197, 212
translation, 154, 193, 202

Symmetry of electric field, 6, 156
Symmetry of magnetic field, 6, 214
System of linear equations, 70, 265

Tangential component of vector, 6,
10

Total magnetic scalar potential, 168
Transformation, 74, 129, 131, 222,

239, 242, 260
algebraic representation of, 77
identity, 242, 259
into dissimilar bases, 87
into similar bases, 87
orthogonal, 89
positive definite, 91
symmetric, 89

Translation symmetry, 154, 193, 202
Trapezoidal quadrature rule, 276
Triangulation, 262
Triple vector products, 4, 11
Truncation, 159, 219

Unbounded domain, 158, 218

Variation, 134
rules, 136

Variational method, 126

Vector
abstract, 128, 130
addition, 1, 3
algebraic representation of, 76
axial, 5, 215
basic operations, 4
column, 69
conjugate, 115
contravariant, 37
covariant, 37
definition by Oliver Heaviside, 1
finite elements, 263
in-plane two-dimensional, 8
multidimensional, 75
multiplication by a scalar, 3
norm, 4
normal component of, 6, 10
out-of-plane two-dimensional,

8
polar, 5, 156
rules, 4
tangential component of, 6, 10
triple products, 4, 11

Vector field, 12
conservative, 20
curl free, 20
divergence free, 20
solenoidal, 20

Vector potential, 19, 56, 60, 167, 180,
194, 198, 199, 203, 321, 325

Volume element, 42, 422, 426
Volume integral of a vector field, 15
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